US 20210149630A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0149630 A1

Merkle et al.

(43) Pub. Date:

May 20, 2021

(54)
(71)

(72)

@

(22)

(63)

MECHANICAL COMPUTING SYSTEMS

Applicant: CBN Nano Technologies Inc., Ottawa
(CA)

Inventors: Ralph C. Merkle, Santa Clara, CA
(US); Robert A. Freitas, JR., Pilot
Hill, CA (US); James Ryley, Downey,
CA (US); Matthew Moses, Lafayette,
CO (US); Tad Hogg, Mountain View,
CA (US)

Appl. No.: 17/161,738
Filed: Jan. 29, 2021

Related U.S. Application Data

Continuation of application No. 16/573,435, filed on
Sep. 17, 2019, now Pat. No. 10,949,166, which is a

3909 -,

D

(52)

&7

continuation-in-part of application No. 14/986,568,
filed on Dec. 31, 2015, now Pat. No. 10,481,866.

Publication Classification

Int. Cl1.

GO6F 5/01 (2006.01)

HOIB 3/30 (2006.01)

HOIB 3/18 (2006.01)

HO3K 19/20 (2006.01)

U.S. CL

CPC ... GO6F 5/01 (2013.01); HO3K 19/20

(2013.01); HOIB 3/18 (2013.01); HOIB 3/307
(2013.01)

ABSTRACT

Systems and methods are disclosed for creating mechanical
computing mechanisms and Turing-complete systems which
include combinatorial logic and sequential logic, and which
are energy-efficient.

Patent Application Publication = May 20, 2021 Sheet 1 of 39 US 2021/0149630 A1

103

Patent Application Publication = May 20, 2021 Sheet 2 of 39 US 2021/0149630 A1

202 A
2 203 N 206

310

Patent Application Publication = May 20, 2021 Sheet 3 of 39 US 2021/0149630 A1

40 l ..v,,.:_.;;.::'

FIG. 4

Patent Application Publication = May 20, 2021 Sheet 4 of 39 US 2021/0149630 A1

FIG. 5

Patent Application Publication = May 20, 2021 Sheet 5 of 39 US 2021/0149630 A1

FIG. 6

Patent Application Publication = May 20, 2021 Sheet 6 of 39 US 2021/0149630 A1

e 712

- 713

Patent Application Publication = May 20, 2021 Sheet 7 of 39 US 2021/0149630 A1

T
g,
o
5 |

902 =

Patent Application Publication = May 20, 2021 Sheet 8 of 39 US 2021/0149630 A1

1104 4

1106

1112 v.r.v..,._.,..;:,:::_

Patent Application Publication = May 20, 2021 Sheet 9 of 39 US 2021/0149630 A1

1112 =, \

1104 ¢

1106

Patent Application Publication = May 20, 2021 Sheet 10 of 39 US 2021/0149630 A1

112

Patent Application Publication = May 20, 2021 Sheet 11 of 39 US 2021/0149630 A1

1704 M N 1706

K &
%

1 704 u%.%"x, "::y”"f""w 1 706

o 1707

Patent Application Publication = May 20, 2021 Sheet 12 of 39 US 2021/0149630 A1

FIG. 19

Patent Application Publication = May 20, 2021 Sheet 13 0of 39 US 2021/0149630 A1

FIG. 21

Patent Application Publication = May 20, 2021 Sheet 14 of 39 US 2021/0149630 A1

FIG. 22

Patent Application Publication = May 20, 2021 Sheet 15 of 39 US 2021/0149630 A1

FIG. 23

Patent Application Publication = May 20, 2021 Sheet 16 of 39 US 2021/0149630 A1

Patent Application Publication = May 20, 2021 Sheet 17 of 39 US 2021/0149630 A1

FIG. 25

Patent Application Publication = May 20, 2021 Sheet 18 of 39 US 2021/0149630 A1

FIG. 26

Patent Application Publication = May 20, 2021 Sheet 19 of 39 US 2021/0149630 A1

FI1G. 27

Patent Application Publication = May 20, 2021 Sheet 20 of 39 US 2021/0149630 A1

AT ACLECE R

FIG. 28a

Patent Application Publication = May 20, 2021 Sheet 21 of 39 US 2021/0149630 A1

FIG. 28b

Patent Application Publication = May 20, 2021 Sheet 22 of 39 US 2021/0149630 A1

2901 ¢

3001 -, 3012

3013

Patent Application Publication = May 20, 2021 Sheet 23 of 39 US 2021/0149630 A1

Patent Application Publication = May 20, 2021 Sheet 24 of 39 US 2021/0149630 A1

3301 N

3302

3306
~ 3304

FIG. 33a

3304

FIG. 33b

3301 o,

%

3 3 O 2 .,;.:u.:i!\',{‘;;;;;.

FIG. 33¢

Patent Application Publication = May 20, 2021 Sheet 25 of 39 US 2021/0149630 A1

Patent Application Publication = May 20, 2021 Sheet 27 of 39 US 2021/0149630 A1

3910

3909w, - 3906

Patent Application Publication = May 20, 2021 Sheet 28 of 39 US 2021/0149630 A1

Patent Application Publication = May 20, 2021 Sheet 29 of 39 US 2021/0149630 A1

3909 ., 2

.gfz'ff:;" 3 906 :::;;:5::;:;,&'«&. 3 9 1 O L 39 1 7

g 3 9]. 3 ,.,:?’”WM 39 1 5

3901 =n, 3905 . '

3907 i
3914

F1G. 42

Patent Application Publication = May 20, 2021 Sheet 30 of 39 US 2021/0149630 A1

4300
/V//
4318
CinO 7 N
Aq y .
Ag ; .
By : / 5
Bo ; N
V
4314 1 . e
4304 1
I I 0 -
i !
: S 0 w .
v L

\%LR\%}{EK}{}{

SR B 5 I
55 5 3 B I

wog
i) &
N1 . / ,
/ i I I I
4302 ’ / /?/

3 1
S
P
NS
5
”
\\\\

FIG. 433 4306 4312 4316

Patent Application Publication = May 20, 2021 Sheet 31 of 39 US 2021/0149630 A1

4322 4324
4300 Sumy Sumg Couty Coutg

et
]

13

i

i

i

oy 54
T 4320

R o . S Y = S — Y . . . e
e T e T = I o . S . Y ==)

gMHHHMHHHHMMHHHMM

i

i

i

; ”. ”

1

1

{

_ I,

i

i

i

g

j 7 v

1

i

i

g

(| A N N

!

1

1

i

| 7 |,

|

i

1

i

i

| w2 B v,

1

1

1

i

‘ v U

i

i

i

i

1

1

. Y FIG. 43b

Patent Application Publication

May 20, 2021 Sheet 32 of 39

US 2021/0149630 A1

4400
-
4300 4406
A=A Cout y
BB Sum ~Sumr
Clkg—Clk Cin
A N 4402
67 out
Bg—1B Sum AN ~ In Out Sumg
Clkz—{Clk Cin —ni Clk
} Clke
As—=1A Cout \
Bs—=B . Sum In Out In Out|=Sums
Clko—={Clk Cin —Clk - Clk
! Clkg Clk4
Ag—— A Cout !
Bs— B Sum In Cut In Out - In Outl=Sumy
Clk—Clk Cin —=i Clk —i Clk —mi Clk
f Clke Clks Clka
Ag—A Cout
Bg— B Sum Sumsg
Clky——i Clk C?n
Ag— A Cout
Bz—B Sum In Out b= Sumo
Clks—={Clk Cin —w Clk
! Clka
Ai—1A Cout
Clko—={Clk Cin — Clk — Clk
} Clks Clke
Aog—1A Cout
Bog—B Sum —{In Out - In Out —In Out = Syumyg
Clkg—{Clk Cin —=t Clk —= Clk —i Clk
Clke Clkg Clk4
Clky _FClke
4404 " Clkg FIG. 44
Clkal

Patent Application Publication = May 20, 2021 Sheet 33 of 39 US 2021/0149630 A1

4508—1 N\ 4508-2 N

4508-3 45084
4522-2 ™ 4500

4506—-3

~ .., FIG. 46

4504

N

Patent Application Publication = May 20, 2021 Sheet 34 of 39 US 2021/0149630 A1

4700
\ 4710
47\06 STATE FEEDBACK /
4702
4704 \ v N
TRANSITION STATE | QuTPUT | OUTPUT
INPUT| LOGIC MEMORY | LogIc \
A A A A
4708
Clk1 e
Clko
Clks
Clky FIG. 47
Write Enable = 0 Write Enable = 1
Write Enable = 1 Dataln =1
Datain =1
Write Enable = 1
Dataln =0 _
Write Enable = 1 Write Enable = 0

Dataln=20

FIG. 49

Patent Application Publication = May 20, 2021 Sheet 35 of 39 US 2021/0149630 A1

4800 48/\20 i
\ 4806 = ! i
\ N i |
|
|
mmmmmmmmmmmm Wwwmmwmmmmmmmwj§
| p—
4802 i
{
\ . 4804 :
| |
Dataln /A I
Dataln}; f, A\ f / QD hi
Write; — /'f/ I R
Writeg—,) o o :i:
—————— j : VoA
~]
{ ‘!
| U
i !
q H |
| ! P X D i
§ ¥
| |
Clk; | 1 ¥e !
a AR« 5 |
!
1 Jn m ey Si’i |
§ ! v, :}
i ll
i !
N1 I3 !
§ ! 5@ 5@ D::
o 2l
1 i

FIG. 48a

Patent Application Publication = May 20, 2021 Sheet 36 of 39 US 2021/0149630 A1

4800

4812 1 4816 '///
{ \
\

|

i

|

i

i

|

i

|

i

i

|

i

|

|

{ —

|

e T e\ 4818

| T Ty
| 1

;t i 4810
| |

by |

b !

by |

b |

P |

b N |

P !

; | |

| 4808 i

P |

|

B Clig \t Clke g |

. 1 - ‘ |

b Clkg 1

| | Clka |

:l B !

er. 1 ¥ i
| |
L e e e e e e e e e e e e e e .

FIG. 48b

Patent Application Publication = May 20, 2021 Sheet 37 of 39 US 2021/0149630 A1

5006
ARITHMETIC/
LOGIC UNIT 5000
] -
5004 5002 5010
Y
INSTRUCTION | | CONTROL |__| DATA
MEMORY UNIT MEMORY
i
5008 !
T~ INPUT/OUTPUT FIG. 50
5102 5100
CPU
5106 _ e
5110 N ARITHMETIC/ 5112
\ 5104 LOGIC UNIT
INPUT OUTPUT
- CONTROL -
DEVICE UNIT DEVICE
i
5108 !
T MEMORY UNIT
FIG. 51

Patent Application Publication = May 20, 2021 Sheet 38 of 39 US 2021/0149630 A1

A I8

5206
B g 5202 5200
i? ! o e
AO i / J
; i KI//DD K
5204 W 00,
CLock i | 1 °
“T—M:»T% ! Di: m 0,1 ¢ ,
1
B¢
B¢

A I
FIG. 52
5304
BII Y
EO ! N /{//5300
A v . 5308 £ 10
530é 5306 /
R /
i !
o |
1
CLOCK 1 EI} I tIf
e I\I‘ 4,10
\ /
" iEi? 5316 o31=

Patent Application Publication = May 20, 2021 Sheet 39 of 39 US 2021/0149630 A1

5402 5414
e/
54047 [:é%giz £ 400 :éggé:j 5418

5408]

5428
5410
— 5426
5412 5420
0422 “5424
FIG. 54
5504 5500

5502 giing— e
-;RWV¢ 2 o Data, 5512
5506
[: l .I a Datag
Clock

FIG. 55

US 2021/0149630 Al

MECHANICAL COMPUTING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
application Ser. No. 16/573,435 filed 2019 Sep. 17, which in
turn is a continuation-in-part of U.S. application Ser. No.
14/986,568 filed 2015 Dec. 31 now U.S. Pat. No. 10,481,
866, both incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH

[0002] Not applicable.
SEQUENCE LISTING OR PROGRAM
[0003] Not applicable.
TECHNICAL FIELD
[0004] The present invention relates to the field of com-

puter technology or computer systems relating to general
purpose devices that can be programmed to carry out a set
of arithmetic or logical operations. More specifically, the
present invention is directed to mechanical computing,
wherein a mechanical computer is built from mechanical
components rather than electronic components.

BACKGROUND

[0005] Methods for mechanical computation are well-
known in the prior art. (Svoboda, “Computing Mechanisms
and Linkages,” New York, Dover Publications, 1965; Brad-
ley, “Mechanical Computing in Microelectromechanical
Systems (MEMS),” AIR FORCE INSTITUTE OF TECH-
NOLOGY, AFIT/GE/ENG/03-04, Ohio, 2003; Sharma,
Ram et al., “Mechanical Logic Devices and Circuits,” 14th
National Conference on Machines and Mechanisms (Na-
CoMM-09), 2009) However, while the earliest example of a
Turing-complete design is probably Babbage’s Analytical
Engine, which was described in 1837 (although never built),
the vast majority of previous proposals for mechanical
computing are not Turing-complete systems. Rather, they
are either special-purpose devices not intended to address
general-purpose computing at all, or they are partial systems
or mechanisms, lacking crucial capabilities which would
allow them to provide Turing-complete systems. For
example, with respect to partial systems or mechanisms,
known examples include logic gates built from custom parts,
kits, or even toys like Lego. Note that mechanical logic gates
alone, even universal ones, do not by themselves permit
Turing-complete computing; some memory means is also
required. Turing-complete computing requires a means for
combinatorial logic, as well as a means for sequential logic.
[0006] The mechanical computing literature also includes
molecular-scale implementations of various computational
components (again, often not Turing-complete systems),
including (Drexler, “Nanosystems: Molecular Machinery,
Manufacturing, and Computation,” New York, John Wiley
& Sons, 1992; Hall, “Nanocomputers and Reversible
Logic,” Nanotechnology, 1994; Heinrich, Lutz et al., “Mol-
ecule Cascades,” Science, 2002; Remon, Ferreira et al.,
“Reversible molecular logic: a photophysical example of a
Feynman gate,” Chemphyschem, 12, 2009; Orbach,
Remacle et al., “Logic reversibility and thermodynamic
irreversibility demonstrated by DNAzyme-based Toffoli and

May 20, 2021

Fredkin logic gates,” PNAS, 52, 2012; Roy, Sethi et al.,
“All-Optical Reversible Logic Gates with Optically Con-
trolled Bacteriorhodopsin Protein-Coated Microresonators,”
Advances in Optical Technologies, 2012).

[0007] While previous designs for mechanical computing
vary greatly, previous proposals capable of Turing-complete
computing (as opposed to limited-purpose devices) tend to
reply upon a substantial number of basic parts (or “primi-
tives”) including various types of gears, linear motion shafts
and bearings, springs (or other energy-storing means, e.g.,
some designs use rubber bands), detents, ratchets and pawls,
or other mechanisms which have the potential to be energy-
dissipative, as well as increasing the complexity of the
device. Note that such designs require these various primi-
tives to function properly; they are not optional.

[0008] That the use of many types of basic parts in a
mechanical system can complicate design, manufacture, and
assembly, as well as potentially reducing reliability, is obvi-
ous. Reducing the complexity of mechanisms is a common
inventive goal.

[0009] Note also that many of the mechanisms used in
previous proposals for mechanical computing generate sub-
stantial friction. Removing such mechanisms would have
benefits beyond reducing device complexity, including
reduced energy expenditure. However, judged by the preva-
lence of friction-generating mechanisms in mechanical com-
puting systems, it is difficult to design around this issue.
[0010] Perhaps less evident than friction are other modes
of energy dissipation, including vibrations, which may, e.g.,
create heat, or generate acoustic radiation. For example,
ratchets and pawls, detents, or other mechanisms which
involve the relatively uncontrolled impact of one piece of a
mechanism upon another can lead to energy-dissipating
vibrations, and so the removal of these types of mechanisms
would also have benefit.

[0011] Waste heat is a well-known issue for computational
systems, electronic or mechanical, which dissipate far more
energy per bit operation than is required in theory. In theory,
computations can be performed where the energy dissipated
is only In(2) k;T per irreversible bit operation. This is called
the Landauer Limit (Landauer, “Irreversibility and Heat
Generation in the Computing Process,” IBM Journal of
Research and Development, 1961) and has been confirmed
experimentally (Berut, Arakelyan et al., “Experimental veri-
fication of Landauer’s principle linking information and
thermodynamics,” Nature, 7388, Nature Publishing Group,
2012).

[0012] Note that the Landauer Limit only applies to irre-
versible operations. Reversible operations can, in theory,
dissipate zero energy. While conventional computers are
generally not built upon reversible hardware, reversible
computing has been studied for decades (Landauer, “Irre-
versibility and Heat Generation in the Computing Process,”
IBM Journal of Research and Development, 1961; Bennett,
“The Thermodynamics Of Computation,” International
Journal of Theoretical Physics, 12, 1973; “Logical revers-
ibility of computation,” IBM Journal of Research and
Development, 6, 1973; Toffoli, “Technical Report MIT/
LCS/TM-151—Reversible Computing,” Automata, Lan-
guages and Programming, Seventh Colloquium, Noordwijk-
erhout, Netherlands, Springer Verlag, 1980; Toffoli and
Fredkin, “Conservative Computing,” International Journal
of Theoretical Physics, 3/4, 1982; Bennett and Landauer,
“The Fundamental Physical Limits of Computation,” Sci-

US 2021/0149630 Al

entific American, 1985; Feynman, “Quantum Mechanical
Computers,” Foundations of Physics, 6, 1986). For a general
overview of reversible computing from a software perspec-
tive, see (Perumalla, “Introduction to Reversible Comput-
ing,” CRC Press, 2014).

[0013] Whether reversible or irreversible, novel designs
for mechanical computational systems that have the poten-
tial to reduce device complexity (along with the associated
design, manufacturing and assembly costs) and use less
energy per bit operation than existing designs, would be
quite useful. Not being subject to the Landauer Limit,
reversible designs have the potential to ultimately use the
least energy. However, existing computing systems use
energy so far in excess of the Landauer Limit that even
irreversible designs could greatly improve upon the state of
the art.

SUMMARY

[0014] Embodiments of the invention include mechanical
computing mechanisms and computational systems which
have lower energy dissipation, a smaller number of basic
parts, and other advantages over previous systems. Multiple
embodiments are disclosed including mechanical link logic,
mechanical flexure logic, and mechanical cable logic, along
with design paradigms (including both mechanical designs,
principles, and a novel classification system which catego-
rizes systems as Types 1 through 4) that teach how to apply
the general principles to other embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] For a more complete understanding of the present
invention, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawings,
in which:

[0016] FIG. 1 depicts a side view of a molecular rotary
joint.

[0017] FIG. 2 depicts a side view of a four-bar linkage.
[0018] FIG. 3 depicts a top view of a mechanism which

can serve as the basis for a NAND or AND gate.
[0019] FIG. 4 depicts a top view of a mechanism which
can serve as the basis for a NOR, NAND, AND, or OR gate.

[0020] FIG. 5 depicts a top view of a XOR gate.

[0021] FIG. 6 depicts a top view of a Fredkin gate.
[0022] FIG. 7 depicts a top view of a co-planar lock in the
(0,0) state.

[0023] FIG. 8 depicts a top view of a co-planar lock in the
(1,0) state.

[0024] FIG. 9 depicts a top view of an alternate embodi-

ment of a co-planar lock in the (0,0) state.

[0025] FIG. 10 depicts a top view of an alternate embodi-
ment of a co-planar lock in the (1,0) state

[0026] FIG. 11 depicts a ¥4 view of a non-co-planar lock
in the (0,0) state.

[0027] FIG. 12 depicts a top view of a non-co-planar lock
in the (0,0) state.

[0028] FIG. 13 depicts a ¥ view of a non-co-planar lock
in the (1,0) state.

[0029] FIG. 14 depicts a top view of a non-co-planar lock
in the (1,0) state.

[0030] FIG. 15 depicts a % view of a non-co-planar lock
in the (0,1) state.

[0031] FIG. 16 depicts a top view of a non-co-planar lock
in the (0,1) state.

May 20, 2021

[0032] FIG. 17 depicts a top view of a balance with an
input of 0.
[0033] FIG. 18 depicts a top view of a balance with an

input of 1 with an anchor at the top.

[0034] FIG. 19 depicts a top view of a balance with an
input of 1 with an anchor at the bottom.

[0035] FIG. 20 depicts a top view of a binary double
balance with inputs (1,0).

[0036] FIG. 21 depicts a top view of a binary double
balance with inputs (1,1).

[0037] FIG. 22 depicts a top view of a switch gate.
[0038] FIG. 23 depicts a top view of a lock and balance-
based NAND gate.

[0039] FIG. 24 depicts a top view of a lock and balance-
based Fredkin gate.

[0040] FIG. 25 depicts a top view of a shift register cell in
its blank state.
[0041] FIG. 26 depicts a top view of a shift register cell

after input has been provided but before a clock signal is set
to high.

[0042] FIG. 27 depicts a top view of a shift register cell
after input has been provided and a clock signal has been set
to high.

[0043] FIG. 28a depicts a top view of the left half of a
two-cell shift-register.

[0044] FIG. 28b depicts a top view of the right half of a
two-cell shift-register.

[0045] FIG. 29 depicts a top view of a canceling group.
[0046] FIG. 30 depicts a top view of a flexure-based lock.
[0047] FIG. 31 depicts a top view of an MCL pulley and

associated mechanisms.

[0048] FIG. 32 depicts a side view of an MCL pulley and
associated mechanisms.

[0049] FIG. 33a-FIG. 33c¢ depict top views of various
states of one embodiment of an MCL lock.

[0050] FIG. 34 depicts a ¥ view of a knob which can be
used to create a lock.

[0051] FIG. 35 depicts a ¥4 view of two knobs forming a
lock in the (0,0) state.

[0052] FIG. 36 depicts a ¥ view of a lock in the (0,1)
state.

[0053] FIG. 37 depicts a ¥ view of a lock in the (1,0)
state.

[0054] FIG. 38 depicts a top view of an MCL oval.
[0055] FIG. 39 depicts a top view of an MCL balance in
the (0,0) state.

[0056] FIG. 40 depicts a top view of an MCL balance in
the (0,1) state.

[0057] FIG. 41 depicts a top view of an MCL balance in
the (1,0) state.

[0058] FIG. 42 depicts a top view of an MCL balance in

the (1,0) state after actuation.

[0059] FIG. 43a depicts a top view of the left half of a
1-bit full adder formed using locks and balances.

[0060] FIG. 435 depict a top view of the right half of the
1-bit full adder shown in FIG. 43a

[0061] FIG. 44 is a block diagram depicting a multi-bit
adder formed by cascading eight 1-bit adders such as shown
in FIGS. 43a & 43b.

[0062] FIG. 45 depicts a top view of one example of a
4-phase clock that can provide a mechanical clock signal for
mechanisms such as the multi-bit adder shown in FIG. 44.

US 2021/0149630 Al

[0063] FIG. 46 depicts a top view of an example of the
clock shown in FIG. 45 employed to drive a 4-cell shift
register formed by locks and balances.

[0064] FIG. 47 depicts a block diagram of a generic Moore
machine driven by a 4-phase clock, the machine combines
combinatorial and sequential logic functions.

[0065] FIG. 48a depicts a top view of the left half of one
example of a finite state machine, showing one example of
how combinatorial and sequential logic functions can be
provided by a structure formed by locks and balances.
[0066] FIG. 485 depicts a top view of the right half of the
finite state machine shown in FIG. 48a.

[0067] FIG. 49 depicts the state transitions for the finite
state machine shown in FIGS. 48a & 48b.

[0068] FIG. 50 depicts a computing system that employs
the Harvard architecture.

[0069] FIG. 51 depicts a computing system that employs
the Von Neumann architecture.

[0070] FIG. 52 depicts a top view of a NOR gate employ-
ing MLL locks and balances.

[0071] FIG. 53 depicts a top view of a simplified NOR
gate employing MLL locks and balances.

[0072] FIG. 54 depicts a top view of examples of input and
output devices for interfacing a mechanical computing
device with electronic signals.

[0073] FIG. 55 depicts a signal conditioner for removing
noise from an input and limiting the magnitude of the
displacement.

DETAILED DESCRIPTION

Definitions
[0074] The following definitions are used herein:
[0075] “Anchor block™ means one or more rigid structures

to which basic parts or higher-level assemblies can be
attached, and which may also serve as heat sinks. Note that
even when written in the singular, there may be more than
one anchor block, as design needs dictate. The shape of an
anchor block can be arbitrary (“block” should not be taken
to mean that the structure is necessarily rectangular, or any
simple shape). An anchor block can be made from any
appropriate material, not limited to, but including any of the
materials suggested herein from which basic parts could be
made. An anchor block is assumed to be present as needed
whether explicitly stated or not.

[0076] “Anchored” means attached to an anchor block, or
otherwise rendered immobile with respect to other relevant
basic parts or mechanisms. Anchoring may be permanent or
conditional (e.g., depending on data inputs or clock signals),
and a conditionally anchored part may be referred to by its
relevant conditional state (i.e., if the part is unanchored in a
given situation, it may be referred to as unanchored, and vice
versa).

[0077] “Atomically-precise” means where the identity and
position of each atom in a structure are specified by design.
Structures such as naturally-occurring or bulk-manufactured
crystals or quasicrystals, having surface irregularities, impu-
rities, holes, dislocations or other imperfections, are not
atomically-precise. Atomically-precise can, but does not
have to, include knowledge of isotopic composition.
[0078] A “balance” is a structure which transmits move-
ment through one side or route of a mechanism versus
another. Balances can be used, e.g., to perform computations
and to route data. A balance may have any number of inputs

May 20, 2021

and outputs, some of which may be anchored, or condition-
ally anchored (as when connected to a lock). The word
“balance” and forms thereof may also be used in its tradi-
tional sense (e.g., equal masses or forces ‘balance’ each
other) as context dictates.

[0079] A “basic part” is a fundamental building block, or
primitive, of a mechanism or computational system. For
example, the basic parts of MLL are links and rotary joints,
the basic parts of MFL are links and flexures, and the basic
parts of MCL are cables, pulleys, and knobs. “Basic part™ is
synonymous with “primitive,” and the distinction between a
basic part and a mechanism is that basic parts are, at least in
their simplest implementations (e.g., a pulley is a basic part
because it can be monolithic, but some implementations of
a pulley could require an axle as a separate part), not
obviously logically divisible into smaller parts.

[0080] A “cable” is a flexible structure used to transmit
tensile forces, e.g., directly, or via pulleys.

[0081] “Coaxial” refers to rotary joints which share the
same axis of rotation. The term may also be applied to the
analogous concept in co-planar mechanisms which have
multiple joints that share common arcs of movement.
[0082] “Computing system” and forms thereof including
“computational system” means a system for carrying out
general-purpose computations. Such systems are Turing-
complete. Devices only capable of solving a single, or a
limited class of, problems, such as planimeters, harmonic
synthesizers or analyzers, equation solvers, function genera-
tors, and differential analyzers, are not capable of general-
purpose computing, and are therefore not “computing sys-
tems.” Power sources, motors, clock signal generators, or
other components ancillary to Turing-complete computa-
tional means are not part of a computing system. Different
types of computational systems may be interfaced. For
example, an MLL system could take its input, provide its
output, or otherwise interact with other mechanical or elec-
tronic computing components, systems, sensors, or data
sources, although such a system would only constitute an
MLL computational system if the MLL. components them-
selves provide Turing-complete computational means.
[0083] “Co-planar” refers to a mechanism that moves in
one or more parallel planes. The term is used to differentiate
essentially flat (but potentially multi-layer) implementations
of mechanisms from those which utilize movement in non-
parallel planes. The distinction is largely one of convenience
for naming and visualization, as the mechanisms described
herein can be constructed in either a co-planar or non-co-
planar manner.

[0084] “Data link” means a link that aids in transferring
data, from one location to another. A data link may be simply
called a “link” when context makes the meaning clear.
[0085] “Dry switching” as applied to the mechanical com-
putational components described herein means that no force
is applied to mechanisms that are not free to move in some
way.

[0086] A “flexure” is a type of bearing which allows
movement through bending of a material, rather than sliding
or rolling.

[0087] “Fork” means a branch in a line allowing one data
link to be coupled to more than one other data link. A fork
can, e.g., allow the copying of one input/output to multiple
links or lines.

[0088] “Input” means the data, for example encoded by
physical position, supplied to a mechanism, e.g., for pur-

US 2021/0149630 Al

poses of storing the data in memory, transmitting the data
elsewhere, performing combinatorial logic on the data, or
actuating the mechanism (e.g., via a clock signal). For a
variety of reasons, including that the input to one mechanism
can be the output from another, that some mechanisms use
the same data as both inputs and outputs (e.g., a circular shift
register or other mechanisms with a feedback loop), and
because some embodiments permit reversibility, there may
be little distinction between “inputs” and “outputs,” the use
of one term or the other being more for didactic purposes.
Therefore, regardless of which term is used, both are
assumed to apply if appropriate in a given context.

[0089] “Line” means a sequence of connected data links.
Also called a “data line.”

[0090] “Link” means a rigid structure or body connected
to one or more rotary joints.

[0091] A “lock™ is a structure with a plurality of inputs
where one or more of the inputs being set to some pre-
defined range of values results in the other inputs being
locked. For example, in a two-input lock, upon setting one
of the inputs to a non-zero value, the other input is locked
until the non-zero input is returned to zero. In a two-input
binary lock, the non-zero value being set would typically be
1, but the lock mechanism may engage well before the input
actually reaches 1 (e.g., an input of 0.1 on one input may be
sufficient to lock the other input).

[0092] “Logic gate” includes traditionally-irreversible
gates such as AND, CNOT, NAND, NOT, OR, NOR,
XNOR, XOR, reversible gates such as Fredkin and Toffoli
gates, or other mechanisms which provide combinatorial
logic (e.g., reversible implementations of traditionally-irre-
versible gates, or special-purpose logic gates).

[0093] “MCL” stands for Mechanical Cable Logic, a para-
digm for creating computational systems and mechanisms
thereof, using cables, knobs, and pulleys.

[0094] A “mechanism” is a combination of basic parts
forming an assembly of a level of complexity between that
of a basic part and a computational system. For example, in
MLL, lines, locks, balances, logic gates, and shift registers
are all components, as are any sub-assemblies which include
more than one basic part. By virtue of being basic parts,
links and rotary joints, or any other basic parts, are not
mechanisms.

[0095] “MFL” stands for Mechanical Flexure Logic, a
paradigm for creating computational systems and mecha-
nisms thereof, using links and flexures.

[0096] “MLL” stands for Mechanical Linkage Logic, a
paradigm for creating computational systems and mecha-
nisms thereof, using links and rotary joints. Note that as the
first and most extensively described embodiment, details are
provided for MLL that are not necessarily repeated for MFL,,
MCL, or other embodiments. For example, clocking is
described extensively in the context of MLL, but not other
embodiments. Due to the analogous logical and mechanical
nature of the various embodiments presented, given the
teachings herein, it will be apparent how to apply informa-
tion presented for one embodiment to other embodiments.
[0097] “Not-coaxial” refers to two or more rotary joints
which do not share the same axis of rotation, or the analo-
gous concept in co-planar mechanisms.

[0098] “Output” means the data, for example encoded by
physical position, provided by a mechanism. See “Input” for
additional detail and comments on the interchangeability of
the two terms.

May 20, 2021

[0099] A “pulley” is a mechanism which facilitates the
routing of, and/or transmission of forces by, one or more
cables. Traditionally, pulleys rotate as the cable moves, but
this is not necessary, e.g., a cable could slide over a pulley’s
surface if the energy dissipation incurred was suitably low.
Pulleys may be anchored or unanchored. Unanchored pul-
leys may be free to move as dictated by their attached cables,
or may have their movements constrained by a track,
groove, or other guiding means.

[0100] “Rotary joint” means one or more connections
between rigid bodies that allow rotational motion about an
axis. Rotary joints may be anchored or unanchored.

[0101] “Support link” means a link that provides physical
support or kinematic restraint for other links.

[0102] “Turing-complete” has its standard meaning as
used in the field of computer science, with the caveat that,
since real-world systems have bounded memory, time, and
other parameters, such practical limitations are acknowl-
edged to exist, and so the term “Turing-complete,” when
applied to an actual system, may be taken to include such
limitations (resulting in what may be more precisely called
a “linear bounded automata”).

INTRODUCTION

[0103] Herein it is first shown that a mechanical compu-
tational system can be designed solely from two basic parts:
links, and rotary joints (plus an anchor block to which these
basic parts can be affixed; this will be subsequently assumed
and not necessarily mentioned each time), using a design
paradigm referred to as Mechanical Linkage Logic
(“MLL”). Subsequently, the paradigms of MLL are gener-
alized to show other ways in which simple and efficient
mechanical computing systems can be designed, such as
Mechanical Flexure Logic (“MFL”) and Mechanical Cable
Logic (“MCL”) (any of which could also be used in com-
bination). Part of this generalization also includes the
description of a novel classification system based on ways in
which mechanical computing systems can dissipate energy.
[0104] These new paradigms can simplify the design and
construction of mechanical computing mechanisms and sys-
tems, and reduce or eliminate major sources of energy
dissipation, such as friction and vibration, while still oper-
ating at useful computational speeds. Such computational
systems can also be designed to operate reversibly. These,
and other factors, offer various benefits over previously-
proposed computing systems.

[0105] Embodiments of the invention provide all the
mechanisms necessary to create Turing-complete computa-
tional systems. For example, using MLL, this includes lines,
logic gates, locks, and balances, and more complex mecha-
nisms such as shift registers, each requiring no basic parts
other than links and rotary joints. Other embodiments (e.g.,
MFL and MCL) provide analogous basic parts and mecha-
nisms to also permit the creation of Turing-complete com-
putational systems.

Energy-Efficient Mechanical Computing

[0106] As discussed herein, mechanical computing sys-
tems can dissipate energy in several ways, including friction
(including drag caused by thermal movement at the atomic
level), and vibrations, which can be caused not only by
running a mechanical system fast enough to excite its
resonant frequencies (something which can be avoided by

US 2021/0149630 Al

controlling clock speed), but by part-to-part impacts or
relatively unconstrained releases of energy. Examples of
such part-to-part impacts and relatively uncontrolled
releases of energy include the snapping motions of ratchet
and pawl mechanisms, and detents.

[0107] Given these issues, four categories are defined for
mechanical computing devices:

[0108] Type 1: Devices which store potential energy (e.g.,
in a spring) and which then release this energy in a manner
unconstrained by the computational degrees of freedom.
Devices which use ratchets and pawls, or detents, are
examples of a Type 1 device, as the release of stored energy
by the ratchet and pawl or detent are assumedly not tied to
the computational degrees of freedom. In such a device, if,
e.g., a ratchet and pawl were present, while the snapping
motion of the pawl might occur with a periodicity controlled
by a clock system, the energy release of that snapping
motion would not be tied to the clock frequency. Rather, the
speed of the energy release would be a function of, e.g., the
force applied to, and the mass of, the pawl, regardless of the
overall computational speed of the system. The resulting
collision of the pawl with the ratchet could generate vibra-
tions which waste energy.

[0109] Type 2: Devices which store potential energy, and
then release this energy in a manner controlled by the
computational degrees of freedom. For example, in the MLL
systems described herein, if a spring was to be placed
between links in a line, as the system drove the line back and
forth, the spring would compress and decompress. This
compression and decompression would take place gradually,
at the frequency imposed by a system clock. The spring
would not be allowed to snap an unconstrained part into
place at a speed which, from the perspective of the system
clock, is arbitrary. Rather, the movement of the spring and
attached parts is governed by the computational degrees of
freedom. Note that also in the above scenario, the spring is
part of a continuous linkage, and so no collision of parts
occurs like when a ratchet is impacted by its pawl. This can
also help reduce dissipated energy. And, even if part colli-
sions do occur (e.g., see the descriptions of knobs in MCL
systems), since the speed with which such contacts occur
can be coupled to the computational degrees of freedom, it
is possible to choose speeds which do not dissipate unac-
ceptable amounts of energy (and in fact, by driving such
impacts with the system clock, which preferably uses a sine
wave-like signal, even a relatively fast switching speed can
result in very low part velocities at the moment of impact).
[0110] Type 3: Devices which do not store more than
trivial amounts of potential energy, but have parts with
non-trivial unconstrained degrees of freedom. For example,
depending on the implementation, systems could be created
using MLL where, due to one or more locks being in the
blank (0,0) position, connected links are free to move in an
essentially random manner due to thermal noise, system
vibrations, or other causes. Among other issues, such uncon-
strained movement can result in having to expend energy to
periodically set mechanisms to a known state to ensure
reliable operation. (Note that such situations can be avoided
with properly designed systems, and this is presented as
exemplary only).

[0111] Type 4: Devices which do not store more than
trivial amounts of potential energy, and have no more than
trivial unconstrained degrees of freedom. For example, a
properly designed MLL system where all movement is,

May 20, 2021

directly or indirectly, coupled to data inputs and/or the
system clock. No components are allowed to freely “float”
as might a link connected only to a lock in the blank state.
With respect to defining “trivial” unconstrained degrees of
freedom, this means those which occur in a small enough
portion of the overall system (e.g., one particular type of
mechanism has this issue, but the mechanism is rare in the
overall system), or those that occur infrequently enough, that
they do not materially affect overall energy dissipation. An
example of infrequently-occurring unconstrained degrees of
freedom would be when some system mechanisms have
temporarily unconstrained degrees of freedom during an
initialization or reset process. Such processes might only be
needed very infrequently compared to standard computation
operations, and so would contribute very little to a system’s
energy dissipation. With respect to defining “trivial” when
used in reference to potential energy, note that all mechani-
cal systems will store some potential energy. For example,
in theory, even very rigid links deform slightly when force
is applied to them. Assuming no permanent deformation,
they thus technically store potential energy. Such unavoid-
able potential energy storage is considered trivial. The point
of Type 3 and Type 4 systems is the avoidance of systems
which purposefully store potential energy for later release,
such as in a system with springs, where those springs and
their potential energy are required for the system to function
properly.

[0112] Note that lack of substantial deformation is not the
only way to achieve a Type 3 or Type 4 system. Flexures
may have substantial deformation, but can be designed to
store trivial amounts of either total or net potential energy,
as is explained herein. These categories are generally
ordered by their potential for energy efficiency, with Type 1
devices being the least efficient, and Type 4 devices being
the most efficient. That being said, the energy efficiency of
specific systems depends on implementation details. A Type
2 system could be less efficient than a Type 3 system. A poor
implementation could make any system energy inefficient.
Due to the use of ratchets and pawls, detents, springs, or
other mechanisms which store and then release potential
energy in a manner not tied to computational degrees of
freedom, all pre-existing Turing-complete systems for
mechanical computing can be categorized as Type 1.

Mechanical Linkage Logic

[0113] An MLL system is built from various basic parts or
primitives. In the embodiments described, these are rotary
joints and links, which together form mechanical linkages.
Mounted on an anchor block, rotary joints and links can be
used to create higher-order mechanisms such as data trans-
mission lines, locks, and balances. Still higher order mecha-
nisms, including logic gates (both reversible and irrevers-
ible) and shift registers can be created by combining locks
and balances, or implemented more directly using links and
rotary joints. This suffices to build a complete computational
system.

[0114] To demonstrate this, using only links and rotary
joints, the design of data lines, logic gates, locks, and
balances is explained. Subsequently, using some of these
mechanisms, the building of a shift register is described.
Shift registers are simple, yet when combined with one or
more logic gates which provide for universal combinatorial
logic, contain all the fundamental elements required for

US 2021/0149630 Al

computation. If the basic parts can build a shift register and
appropriate logic gates, it follows that an entire computa-
tional system can be built.

[0115] Note that most of the mechanisms described are
tailored towards binary computational systems. As a result,
most links will move between two allowed positions. Some
exceptions exist however, such as designs where, for
example, when one input is 1, the mechanism drives one or
more other inputs “backwards” (uses of words such as
“forward,” backward” and other directions being didactic
conventions only, since no particular directions need be used
in actual mechanisms, nor do such directions need to be
consistent from one mechanism to the next). In other words,
given a two bit input that starts at (0,0), an input of 1 could
cause the mechanism to end up in a state such as (1,-1) or
(1,-0.5) rather than (1,0). As long as the system is designed
to correctly handle such kinematics, this need not be a
problem. Also, links internal to the implementation of vari-
ous mechanisms may move between more than two allowed
positions, even if the inputs and outputs are still binary.
Binary is used for exemplary purposes because it is the most
common type of computational system used in conventional
computers. Ternary, quaternary, or other non-binary compu-
tational systems could obviously be built using the teachings
herein.

[0116] The mechanisms herein were frequently simulated
or diagrammed with Linkage v3 (free from www.linkages-
imulator.com), Autodesk Inventor 2015/2016, or for
molecular models, HyperChem, GROMACS, or Gaussian.
Many of the figures herein represent sub-assemblies taken
out of the context of a complete computational system. As
a result, they are not necessarily functional as shown. For
example, a given mechanism may not being fully con-
strained as depicted because, in a complete system, the
mechanism would attach to other components to satisfy
missing constraints, or would attach to some manner of
actuation (e.g., a clock signal). Realistic routing of data has
sometimes been omitted in favor of, e.g., straight lines, for
clarity. Ancillary support structures, such as anchor blocks,
or links which serve only to provide rigidity (“support
links™), are generally omitted.

[0117] Some diagrams depict parts within mechanisms
which are not basic parts of MLL. The most prevalent
example of this is the use of linear slides in Linkage models.
This is a programmatic convenience because some method
of driving inputs is required to run a simulation in Linkage.
In an actual system, linear slides would be replaced with,
e.g., connections to appropriate inputs/outputs, such as data
lines or clock signals. Note that the kinematic solver used by
Linkage v3 has no concept of clock cycles, so it cannot drive
various inputs sequentially. And, Linkage, and other pro-
grams, may fail on valid mechanisms simply because the
solver cannot compute the kinematics correctly. Due to
these, and other, caveats, the figures herein should not be
taken as complete, working mechanisms, but rather as
didactic examples which, given the teachings herein, can be
readily adapted to create working mechanisms, and com-
bined to create complete computational systems.

Rotary Joints

[0118] Friction in a rotary joint can be made smaller and
smaller as the size of the rotary joint gets smaller and
smaller. At the molecular scale, a rotary joint comprising
two atoms rotating around a single bond arguably has zero

May 20, 2021

contact area, and various rotary joints which rotate around
the axis of single chemical bonds have been analyzed and
found to have very little friction. For example, carbon-
carbon single bonds, using carbon atoms mounted on dia-
mond supports, are one way to create a rotary joint that
provides rotation with very little energy dissipation.

[0119] FIG. 1 depicts a molecular model of one possible
implementation of a rotary joint being used to hold a rotating
member. An upper support structure 101 and lower support
structure 102, which would be connected to, e.g., an anchor
block, in a complete device, are used to connect a set of
upper and lower bonds, along the same axis of rotation, to
a rotating member 103. The upper bonds include upper
carbon-carbon single bond 104, upper carbon-carbon single
bond 105, and upper carbon-carbon triple bond 106. The
lower bonds include lower top carbon-carbon single bond
107, lower bottom carbon-carbon single bond 108, and
lower carbon-carbon triple bond 109

[0120] The rotary joint is bonded to the support structures
by several oxygen atoms, including upper oxygen atom 110
and lower oxygen atom 111. The rotating member 103 as
depicted is a roughly circular slab of diamond, but this is
representative only, as are the other structures. The rotating
member could be a link, a flywheel (e.g., to generate a clock
signal), or anything else that needs to rotate, in any shape.

[0121] Molecular dynamics simulations indicate that, with
or without the acetylenic units exemplified by upper carbon
atoms and triple bond 106 and lower carbon atoms and triple
bond 109, this structure allows rotation with remarkably
little drag. However, interposing an acetylenic unit between
the surrounding single bonds further reduces the energy
dissipation of such a rotary joint.

[0122] Given this example it will be obvious that varied
implementations, including other molecular structures,
could provide the same type of mechanism. For example,
with small modifications to the model depicted in FIG. 1, the
oxygen atoms exemplified by oxygen atom 110 and oxygen
atom 111, might be replaced with nitrogen, or another
element with an appropriate valence, bond strength, and
steric properties. Similarly, carbon could be replaced with
silicon or other appropriate elements. Or, entirely different
structures could be used, including carbon nanotubes or
other structures, preferably those which can stiffly hold
molecular-scale rotary joints.

[0123] Additionally, such a rotary joint does not need to
consist of only a single bond or pair (e.g., upper and lower)
of'bonds. For example, in larger implementations, the rotary
joint could be replaced with a vee jewel bearing, a rolling
element bearing, nested fullerenes (e.g., carbon nanotubes),
or any one of many ways known to allow rotation, prefer-
ably with low friction. Also, multiple co-axial rotary joints
can be used to create a stronger joint (e.g., using a structure
similar to the interdigitated design of a door hinge). And, at
the molecule scale, adding additional rotary joints on the
same rotational axis could further reduce the rotational
barrier if appropriate attention is paid to symmetry. Note that
while a rotary joint can be formed using one bond, device
strength and stiffness can benefit from a rotating part being
held on two sides, as depicted in FIG. 1, and/or using
multiple bonds, such as in the “door hinge” example. With
respect to molecular-scale embodiments, for ease of descrip-
tion, rotary joints may be referred to as rotating about a
single bond, although in some cases it would be more

US 2021/0149630 Al

precise to say that multiple bonds may be used to form a
single axis of rotation for the overall rotary joint.

[0124] The magnitude of the rotational barriers, the torque
required to overcome them, the length of the lever arms
(e.g., links), and the time to rotate the link through the
necessary range of the rotary joint (and how far that range
is) all depend on the design of a particular system. As an
example, molecular dynamics simulations show that the
energy required to rotate a link connected to a molecular
rotary joint through one radian at a speed of 1x10E9
radians/sec and a temperature of 180K can be below 1x10E-
25 J. The Landauer Limit is 1.72x10E-21 J at 180K. This
number is so far above the 1x10E-25 J figure for a one radian
rotation of a link around a rotary joint that even mechanisms
that use many rotary joints to perform a single bit operation
could do so under the Landauer Limit. Further, it is expected
that viscous drag from rotary joints, and energy loss from
other vibrational modes, will rapidly decrease as operating
temperature decreases due to phonons becoming frozen out.

Links

[0125] At their most basic, links are stiff, rod-like struc-
tures, although some implementations may have different or
substantially more complex shapes. Most of the analysis
herein which requires estimations of values such as link
mass, resonant frequencies, and heat conduction, assume a
link is composed of a diamond rod approximately 20 nm in
length and 0.5-0.7 nm in diameter. However, links could be
larger, or smaller, or completely different in shape (as seen
in the non-co-planar lock examples).

[0126] One of the smallest ways to implement a link
would be to use a single covalent bond as a link. For
example, there are many molecules which have more than
one possible configuration, and the transition between con-
figurations (“conformers”) could constitute the movement of
a link. One specific example is cyclohexane, which has
several possible conformations, including two chair confor-
mations, the basic boat conformation, and the twist boat
conformation. Switching between different conformations
can occur through bond rotation (although other changes,
such as changes in bond angle or torsion, may also be
present and used), similar to that in the previously-described
rotary joint, and results in the movement of one or more of
the atoms in the structure.

[0127] The ability of such molecular conformational
changes to propagate over relatively long distances and
through complex networks is known to exist in biology,
where it is termed “conformational spread”. (Bray and
Duke, “Conformational spread: the propagation of allosteric
states in large multiprotein complexes,” Annu Rev Biophys
Biomol Struct, 2004), and it will be apparent that synthetic
systems could be designed that work on the same principles
as larger linkages, but using only a single bond as a link.
Such designs could allow link lengths in the angstrom range.
[0128] Regardless of the exact implementation of links
and rotary joints, one of the basic tasks in a computational
system is to move data from place to place. The exemplary
systems described use links connected by rotary joints to
move data. While many types of linkages would work,
including linkages that provide true straight-line movement,
4-bar linkages are frequently used as an exemplary manner
of precisely constraining link movement. FIG. 2 depicts a
side view of such a 4-bar linkage (note that these are
sometimes called 3-bar linkages, since the support structure

May 20, 2021

may or may not be considered an additional bar), comprising
an anchor block 205, left support link 202, right support link
207, and data link 204, wherein the lower end of the left
support link 202 is connected to the left side of the anchor
block 205 by left anchored rotary joint 203 and the lower
end of the right support link 207 is connected to the right
side of the anchor block 205 by right anchored rotary joint
206, and the upper end of the left support link 202 is
connected to the left side of the data link 204 by upper left
rotary joint 201 and the upper end of the right support link
207 is connected to the right side of the data link 204 by
upper right rotary joint 208. Left anchored rotary joint 203
and right anchored rotary joint 206 are prevented from
moving with respect to each other by the anchor block 205.
Data link 204 transmits the movement of one support link to
another support link. The left support link 202 and right
support link 207 are shown shifted to the left. The left-
leaning support links put the data link 204 in a position to the
left of the left anchored rotary joint 203 and right anchored
rotary joint 206. Arbitrarily, this left position can be called
“0” or “low”, while if the left support link 202 and right
support link 207 were leaning to the right, that position
could be called “1” or “high.” This provides a basis for a
binary system of data storage and transfer.

[0129] It will be apparent, even in the absence of the
anchored rotary joint symbol, that left anchored rotary joint
203 and right anchored rotary joint 206 are anchored rotary
joints because they terminate on anchor block 205. In
subsequent figures the anchor block may not be explicitly
shown. Rather, the diagrammatic convention is often
adopted where unfixed rotary joints are depicted as a circle
at the intersection of multiple links (which are generally
represented as straight lines or bars, although some may
have more complex shapes), while fixed or anchored rotary
joints are depicted as a circle and a triangle with short
diagonal lines at its base. In other figures, generally to
reduce complexity, some of these conventions may be
changed or eliminated. The figure descriptions and context
will make it obvious how such diagrams are to be inter-
preted.

[0130] As has already been described, information can be
transmitted along the length of a single data link. However,
more complex transmission and routing of data can be
useful. One data link can be connected to any number of
other data links to continue the transmission of data. Data
transmission can continue in a straight line across additional
support links (while effectively just a longer data link, it may
be useful to include additional support links to increase
stiffness), or can change direction at rotary joints, at what-
ever angle and in whatever plane desired. And, one link can
connect to multiple other links not only sequentially, but also
through forking structures, effectively copying the data for
use in multiple locations. This provides considerable flex-
ibility in routing data.

[0131] Data transmission may occur in both directions.
Movement of a first data link causes a second data link to
move, and movement of the second data link causes the first
data link to move. By this means every data link in the chain
is tied to its neighbors. All the data links in a chain, which
can be of some significant length, can be made to share a
common movement, a property that can be used to share a
single binary value along the entire length of the chain. A set
of connected links is called a line.

US 2021/0149630 Al

Scale

[0132] MLL could be implemented using basic parts of
virtually any size desired. For example, at macroscopic
scales, conventional machining or 3D printing could be
used, with, e.g., vee jewel bearings or rolling-element bear-
ings for rotary joints and conventional beams or rods for
links. At a smaller scale, e.g., 3D printing, lithography-based
techniques, or any of the other well-known ways in which
NEMS/MEMS devices can be manufactured, could be used
to create devices with mechanisms in the nanometer to
micron range. At an even smaller scale, MLLL, mechanisms
could be molecular-scale. Due to the higher operational
frequencies and reduced energy dissipation which tend to be
afforded by smaller parts, MLL systems would preferably be
implemented at the smallest scales feasible (while taking
into account factors such as performance requirements and
budget). For this reason, while most of the teachings herein
are scale-independent, estimations of energy dissipation
focus on an exemplary molecular-scale embodiment.
[0133] Molecular bearings, gears, and rotors have been
studied both theoretically and experimentally, and represen-
tative literature includes (Han, Globus et al., “Molecular
dynamics simulations of carbon nanotube-based gears,”
Nanotechnology, 1997; Kottas, Clarke et al., “Artificial
Molecular Rotors,” Chem. Rev., 2005; Khuong, Dang et al.,
“Rotational dynamics in a crystalline molecular gyroscope
by variable-temperature 13C NMR, 2H NMR, X-ray dif-
fraction, and force field calculations,” J] Am Chem Soc, 4,
2007; Frantz, Baldridge et al., “Application of Structural
Principles to the Design of Triptycene-Based Molecular
Gears with Parallel Axes,” CHIMIA International Journal
for Chemistry, 4, 2009; Wang, Liu et al., “Molecular Rotors
Observed by Scanning Tunneling Microscopy,” Three-Di-
mensional Nanoarchitectures, 2011; Isobe, Hitosugi et al.,
“Molecular bearings of finite carbon nanotubes and fuller-
enes in ensemble rolling motion,” Chemical Science, 3,
2013; Carter, Weinberg et al., “Rotary Nanotube Bearing
Structure and Methods for Manufacturing and Using the
Same,” U.S. Pat. No. 9,150,405, 2015).

[0134] Molecular motors, while not necessarily required
to drive MLL systems, are commonplace enough now that
entire books and conferences are devoted to the topic.
(Joachim and Rapenne, “Single Molecular Machines and
Motors: Proceedings of the 1st International Symposium on
Single Molecular Machines and Motors,” Springer, 2013;
Credi, Silvi et al., “Molecular Machines and Motors,” Topics
in Current Chemistry, Springer, 2014)

[0135] Additionally, molecular-scale computing, in vari-
ous forms (generally not Turing-complete), already exists.
(Heinrich, Lutz et al., “Molecule Cascades,” Science, 2002;
Reif, “Mechanical Computing: The Computational Com-
plexity of Physical Devices,” Encyclopedia of Complexity
and System Science, Springer-Verlag, 2009; Remon, Fer-
reira et al., “Reversible molecular logic: a photophysical
example of a Feynman gate,” Chemphyschem, 12, 2009;
Orbach, Remacle et al., “Logic reversibility and thermody-
namic irreversibility demonstrated by DNAzyme-based Tof-
foli and Fredkin logic gates,” PNAS, 52, 2012; Roy, Sethi et
al.,, “All-Optical Reversible Logic Gates with Optically
Controlled Bacteriorhodopsin Protein-Coated Microresona-
tors,” Advances in Optical Technologies, 2012).

[0136] In addition to other techniques present in the lit-
erature, molecular-scale MLL mechanisms and computa-
tional systems could be created using, e.g., molecular manu-

May 20, 2021

facturing using mechanosynthesis, or assembly of properly
functionalized molecules using atomic force microscopy-
type equipment. Conventional chemistry or self-assembly
(including DNA origami-type techniques) may also be a
feasible route for manufacturing molecular-scale MLL
mechanisms. Given the very limited number of basic parts
required (e.g., links and rotary joints in MLL) for the
presented embodiments, synthesis and assembly of the nec-
essary basic parts and mechanisms is in many ways simpler
than the complexities of manufacturing a conventional elec-
tronic computer or than implementing previous proposals
for mechanical computing.

Energy Dissipation

[0137] As noted, an entire MLL system can be constructed
with nothing but links and rotary joints. Since, particularly
at the molecular-scale, there is very little energy loss from
rotation around a well-designed rotary joint, a complete
computational system can be designed which dissipates very
little energy. Additional MLL design paradigms (e.g., torque
and mass balancing to reduce or prevent acoustic radiation)
are also discussed herein, and these can help reduce energy
dissipation even further. Beyond the physical design of the
computational system, operating conditions can also affect
energy dissipation. For example, if an MLL system is
operated in a vacuum, acceleration and deceleration of links
takes place smoothly, and the applied forces are small
enough that deformation of basic parts contributes negligible
energy dissipation, energy dissipation may be reduced fur-
ther.

[0138] The design of MLL mechanisms, and their inter-
action with the clocking system, may also affect energy
dissipation. For example, MLL systems can be designed
such that, by using clock phases appropriately, force is not
applied to mechanisms that are not free to move (e.g., such
a system does not try to move a locked mechanism without
first unlocking it). This is the MLL version of “dry switch-
ing,” a term normally used in the field of relays to indicate
that switches have no voltage across them when changing
state, but herein will be used in the context of MLL. Note
that while it is a major novel finding of MLL that complete
computational systems can be designed with nothing beyond
links and rotary joints, MLL systems may incorporate, or
interface with, additional components. For example, it is
described herein how cams and cam followers are one way
to generate clock signals. However, even though cams and
cam followers can be designed (as is explained herein) to
have minimal energy dissipation, such mechanisms are
ancillary to, not actually part of, MLL. Motors or other ways
of powering the movement of MLL systems are another
example of a function that may be coupled to an MLL
system, but are not considered part of MLL, and the same
could be said for, for example, input/output interfaces which
bridge, e.g., MLL and electronic systems or non-MLL
mechanical systems.

[0139] Any mechanical system can dissipate substantial
energy if run fast enough to excite internal mechanical
resonances. To keep power dissipation as low as possible,
proper design can avoid low frequency vibrational modes
being coupled to the clock, and the remaining vibrational
modes can be computed and avoided by picking a speed of
operation slow enough to avoid exciting them, as well as a
clocking waveform that minimizes their excitation. In a
molecular-scale mechanical system such resonant frequen-

US 2021/0149630 Al

cies can be in the gigahertz range, and the limits they impose
on switching speed can therefore be correspondingly high.
[0140] The switching speed of an MLL system will, just as
in electronic computers, be determined by one or more
clocks which produce clock signals. If the frequency spec-
trum of a clock signal has a component of its energy at or
above the resonant frequencies of the mechanisms to which
it is attached, then a greater fraction of the clock energy
could be dissipated than is necessary.

[0141] In an MLL system, changes in a clock signal are
preferably gradual so as not to generate higher frequency
components. For example, the gradual changes inherent in a
sine wave-like transition between 0 and 1 (potentially with
flat areas at 0 and 1 between transitions to allow for
non-perfect synchronization of mechanisms between differ-
ent clock phases) allow a clock signal to avoid placing
greater strain on system mechanisms than necessary as parts
accelerate and decelerate more uniformly than if, e.g., a
square wave, was used.

[0142] There are many ways of generating clock signals.
One way of generating a gradually-changing clock signal is
to use a spinning mass whose rotational motion is converted
into linear or quasi-linear motion. This is, conceptually, the
equivalent of a flywheel and crank, and such a device can be
made with only links and rotary joints. Some embodiments
of MLL systems may couple to other methods of generating
clock signals, such as spring and mass systems, or cams and
cam followers, which are described herein.

[0143] Several possible sources of energy dissipation were
analyzed, including stress induced thermal disequilibrium,
and acoustic radiation. These were not the primary limiting
factors in operating frequency, at least for the exemplary
systems analyzed (e.g., molecular-scale, diamond-based
systems). Mechanical resonances and inertia are the primary
limits to switching speed for these systems.

[0144] While thermal equilibration turns out not to be a
limiting factor for the exemplary systems analyzed, in some
situations it could be, and one objective when seeking to
minimize energy dissipation could be to operate mecha-
nisms isothermally. For this reason, short thermal equilibra-
tion times can be desirable. To achieve this, the basic parts
of the system are preferably well-coupled to one or more
thermal reservoirs. For example, links are generally bonded
to a rotary joint which is bonded to an anchor block, or to
rotary joints that bond to other links, which are in turn
bonded to an anchor block. While the exact path length can
vary based on the implementation, this tends to keep the path
from any link to an anchor block, which can serve as a
thermal reservoir, short.

[0145] Note that diamond is used as an exemplary anchor
block material (and may also be used for basic parts), for
among other reasons, due to its high stiffness (Young’s
Modulus of about 1000 Gpa). Diamond also has good heat
conduction, which can be over 2000 W/mK in natural
diamond, and higher in defect-free and isotopically purified
diamond (a principle which applies to other materials as
well). Many other materials could be used, for both anchor
blocks and basic parts, although high stiffness would be
preferred for various reasons, including raising the fre-
quency of resonant vibrations, and good heat conduction
would be preferred if fast thermal equilibration is desired.
Other exemplary materials include Carbyne (Young’s
Modulus of 32,100 GPa), various Fullerenes (e.g., carbon
nanotubes can have Young’s Moduli of over 1000 GPa,

May 20, 2021

thermal conductivity of 3180-3500 W/mK or higher), Sili-
con Carbide (Young’s Modulus of 450 GPa), and Silicon
(Young’s Modulus of 130-185 GPa, thermal conductivity of
148 W/mK). Note that these values are approximate, and
generally represent values measured at 300K (room tem-
perature). The values may vary substantially depending on a
material’s atomic structure, purity, isotopic composition,
size and shape, and temperature. For example, while Sili-
con’s thermal conductivity is 148 W/mK at 300K, it can
exceed 3000 W/mK at temperatures around 20K.

[0146] Further, note that MLL systems need not be com-
posed of only one type of material. Various materials each
have different pros and cons, including not only bulk prop-
erties such as stiffness, thermal conductivity, and thermal
expansion, but at the molecular scale, the strength of indi-
vidual bonds may become important, as may be the exact
size of various basic parts and their inter-atomic spacing
(e.g., so that they mesh properly with other basic parts,
among other concerns). Given this, MLL systems may use
a variety of different materials.

[0147] The estimated thermal equilibration time of one
exemplary molecular-scale embodiment using diamond
links about 20 nm in length is ~0.54 ps. Given this, even a
few nanoseconds of thermal equilibration makes the energy
dissipated due to thermal disequilibrium essentially O.
Therefore, thermal equilibration time is not the limiting
factor in switching time for such an embodiment.

[0148] In theory, a reversible operation can be carried out
with O energy, while irreversible operations result in the
dissipation of In(2) kBT of heat (~3x10-21 I at room
temperature) per bit erased, regardless of the hardware’s
efficiency (the Landauer Limit). To reduce the energy dis-
sipation of a program running on a conventional (irrevers-
ible) computer, the logic elements of the hardware might be
redesigned to dissipate less energy during the computational
process. This could result in a significant improvement in
energy efficiency because a conventional computer dissi-
pates much more than In(2) kBT per erased bit. In fact, even
when executing instructions that erase no bits at all, a
conventional computer dissipates much more than In(2) kBT
per operation. As a consequence, it is possible to reduce the
energy dissipation of a conventional computer without pay-
ing any attention to reversibility.

[0149] However, if the energy efficiency of a computer is
improved to the point that the Landauer Limit becomes
significant, reversibility becomes important, as it allows
computations to be carried out under the Landauer Limit.
Consequently, MLL mechanisms are designed to allow
reversibility, although both reversible and irreversible com-
putational systems can be implemented using MLL. Note
that reversibility can occur at several levels. For example, an
individual Fredkin gate is reversible. However, reversibility
may also be implemented at higher levels, such as when
using a retractile cascade to uncompute a series of previous
computations. Such techniques are well-known in the lit-
erature, along with appropriate clocking schemes such as
Bennett Clocking and Landauer Clocking.

Conventional Logic Gates

[0150] Links and rotary joints not only serve as the basic
parts for moving data from place to place, but also form the
basis for logic gates. An important finding of MLL is that
any logic gate, reversible or irreversible, can be imple-

US 2021/0149630 Al

mented with only links and rotary joints, affixed to an anchor
block to hold them in place (and which may also serve as a
thermal sink).

[0151] For example, FIG. 3 shows a mechanism that can
serve as both an AND and a NAND gate. Anchor 301 and
linear slide 302 serves as the first input to the gate, con-
necting to rotary joint 306. Anchor 303 and linear slide 304
serves as the second input to the gate, connecting to rotary
joint 307. Anchored rotary joints 305 and 309, plus unan-
chored rotary joints 306, 307, 308, 310 and 311 are con-
nected via the appropriate links. AND output 310 and
NAND output 311 provide for the use of the gate as an AND
or NAND gate. The functioning of this gate is as follows. If
linear slide 302 pushes on rotary joint 306 (an input of “17,
whereas no movement of the linear slide would be an input
of 0) and linear slide 304 pushes on rotary joint 307, the
effect will be to drive AND output 310 forward, producing
an output of “1.” If either of the inputs (or both) are 0, AND
output 310 ends up in the same position it started, producing
an output of “0.” This reproduces the truth table expected of
an AND gate.

[0152] Since a NAND gate is an AND gate with inverted
output, the same mechanism can be used as a NAND gate by
reading NAND output 311 instead of AND output 310,
assuming that, since NAND output 311 moves in the oppo-
site direction of AND output 310, no movement at NAND
output 311 represents an output of “1” and movement to the
left represents a “0”. Of course, for use only as an AND gate,
NAND output 311 need not be present. And, for use only as
a NAND gate, the AND output 310 can be ignored. The two
are combined for illustrative purposes; they would not
necessarily be so combined in actual use. Since NAND is
known to be a universal gate (meaning, all other gates can
be created with the appropriate combination of NAND
gates), this mechanism alone would suffice to create any
combinatorial logic. However, it may be more efficient to
construct other types of gates directly, rather than through
the combination of NAND gates, and to demonstrate other
types of gates, including an alternate embodiments of the
NAND gate, additional logic gates are subsequently
described.

[0153] FIG. 4 shows a NOR gate made with only links and
rotary joints. Input 1 comprises linear slide anchor 401 and
is connected via a rotary joint to inverter 405. Input 2
comprises linear slide anchor 403 and linear slide 404 and is
connected via a rotary joint to inverter 406. As in all such
figures, the linear slides are present as a diagrammatic or
programmatic convenience and should be taken to represent
some appropriate connection when these individual mecha-
nisms are combined into a higher-level assembly. Inverters
405 and 406 invert a leftward signal to a rightward signal
and vice-versa and connect via rotary joints to upper right
portion of the mechanism 407, and lower right portion of the
mechanism 408, respectively. Due to the inverters, when
either of the inputs pushes to the right, the movement gets
inverted into a leftward motion in the upper right portion of
the mechanism 407 and the lower right portion of the
mechanism 408. The position of output 409 replicates the
expected truth table, with the illustrated position represent-
ing a “1” and the position where the output moves to the left
representing a “0”. While other implementations are pos-
sible, this gate was shows the modular nature of the mecha-
nisms. A NOR gate is equivalent to an AND gate with both
inputs inverted. The upper right portion of the mechanism

May 20, 2021

407 and the lower right portion of the mechanism 408
therefore show an alternate implementation of an AND gate,
with an inverter attached to each input to instead create a
NOR gate. Removing the inverters and connecting the
inputs directly to the appropriate locations in the upper and
lower right portion of the mechanism would result in an
AND gate. Also, as was shown in FIG. 3, this mechanism
could then also serve as a NAND gate by inverting the
output of the AND gate. Finally, if the inverters are left in
place, but the output inverted, the NOR gate becomes an OR
gate.

[0154] Finally, FIG. 5 shows an XOR gate implemented
using only links and rotary joints. Input 1 comprises
anchored rotary joint 501 and linear slide 502, while input
2 comprises anchored rotary joint 504 and linear slide 503.
Input 1 and input 2 are coupled to output 505 via a series of
links, anchored rotary joints, and unanchored rotary joints.
The movement, or lack thereof, at output 505 replicates the
expected truth table for XOR.

[0155] The foregoing demonstrates that any logic gate can
be directly implemented using only links and rotary joints.
Note that by carrying the input data forward along with the
expected output of a logic gate so that no data is lost in the
computation, logic gates which are traditionally considered
irreversible can be made reversible. There are also well-
known logic gates which are inherently reversible, such as
the Toffoli gate and Fredkin gate, which can also be imple-
mented in many ways using MLL.

Reversible Logic Gates

[0156] FIG. 6 shows a Fredkin gate (also called a CSWAP
gate), a well-known universal reversible gate. The three
inputs to the gate 601, 602 and 603 are connected, via a
series of links, anchored rotary joints, and unanchored rotary
joints, to outputs 604, 605 and 606. It may be of interest to
note that this particular implementation of a Fredkin gate is
composed of three XOR gates, and an AND gate, plus some
forked data lines used to replicate data so that it can be used
at more than one place within the gate. This demonstrates
not only more sophisticated routing of data than the previous
gates, but that reversible logic can be constructed from
irreversible logic. A Fredkin gate does not erase any data and
so need not be subject to the Landauer Limit.

[0157] Given the foregoing logic gate examples, it will be
obvious that any type of logic gate necessary for implement-
ing a complete general-purpose computing system, revers-
ible or irreversible, can be implemented within the design
paradigms of MLL, using only links and rotary joints. Note
that each of the foregoing logic gate examples are co-planar
mechanisms. This means that they operate in one or more
parallel planes, with movement occurring parallel to the
plane of the image. One of the advantages to co-planar
designs is that they are easy to represent on paper, to provide
the reader with an intuitive understanding of how such
mechanisms work. This is not the only way to implement
logic gates, or any MLL mechanism, and mechanisms that
move in more than one plane are also discussed herein. Also
note that in the co-planar mechanisms, hidden or dotted lines
are generally not used to show which links are behind which
other links. This is because it largely does not matter. In most
cases, a given link could be on top of, or below, some other
link, and the function of the mechanism would not be
affected, subject to considerations such as not having links
bump into each other during movement. One may also wish

US 2021/0149630 Al

to consider issues such as arranging the links in a manner
which minimizes the distance to a heat sink, or maximizes
mechanism strength or stiffness, but these exemplary
designs are meant to be didactic, not to provide an optimal
implementation. Optimized implementations could differ
with the requirements of a particular computational system,
including the types of computations to be performed, the
desired computational speed, the desired size or mass of the
system, the materials from which the mechanisms are made,
and the operating environment (e.g., operating tempera-
tures).

Locks

[0158] Various ways in which multiple data links or lines
can interact have already been described. For example, they
can share data by tying their physical movements to each
other around a common rotary joint. And data links or lines
can provide input/output for a logic gate (not to mention
being used inside a logic gate). However, additional methods
of interaction can be useful in implementing a complete
computing system.

[0159] Another way multiple links or lines can interact is
via a mechanism which causes links to interfere with each
other’s movements. That is, the position of a first link can
allow or prevent one or more other links from moving, and
vice versa. For example, consider a two-input mechanism,
where each input can be 0 or 1. The design can be such that
when both inputs are 0, either input could become 1, but
when either input is 1, the other is locked into place and must
therefore remain 0. In this example, more than one input
cannot become 1 at the same time, although other designs
are possible. This mechanism is referred to as a lock. It is
common for a lock to have inputs and outputs, just like a
logic gate. E.g., a 2 input lock has 2 inputs, and can have 0,
1 or 2 outputs. Each input line to the lock can either continue
as an output line, or it can terminate at the lock.

[0160] One of the uses of a lock is to create a conditional
anchor point. As has already been explained, a rotary joint
can be anchored or not anchored, often depending on
whether the rotary joint is affixed to an anchor block.
However, affixing a rotary joint to an anchor block is not the
only way to render it immobile. Rather, a rotary joint can be
connected to one or more links which, due to the configu-
ration of the one or more links (whether this configuration is
permanent or transient), does not permit movement of the
rotary joint. For example, consider a triangle made of three
links. Each link is affixed to the two other links by rotary
joints at each end. If two of these rotary joints are also
connected to an anchor block, even if the third rotary joint
is not connected to an anchor block, it is effectively
anchored, as the entire triangle is rigid. None of the trian-
gle’s links can move with respect to each other, or the anchor
block. In this simple example, assuming there is no way to
change the link configuration, the third rotary joint is effec-
tively anchored. There are situations where it is useful to
have a rotary joint sometimes anchored and sometimes not
anchored. Locks allow this: The side of the lock that is
locked cannot move, and so as long as it is locked, it can
effectively act as an anchor point. The utility of conditional
anchor points will be explained subsequently. Another use-
ful aspect of some embodiments of locks is that, for
example, a binary lock with two inputs can have three
possible states: (0,0), also called “blank,” (0,1), and (1,0).
The blank state can be useful in saving state, and allowing

May 20, 2021

reversible computation, as can be seen herein in the descrip-
tion of how an exemplary shift register can be implemented.

[0161] As with all MLL embodiments, there are multiple
ways of implementing locks using only links and rotary
joints. FIG. 7 and FIG. 8 depict a two-input co-planar lock
in two different states. FIG. 7 shows the position of the lock
where both inputs are 0, while FIG. 8 shows the position of
the lock when one of the inputs is 1. Top input 701 and
bottom input 702 connect via rotary joints to the top and
bottom halves of the lock, respectively. Each half of the lock
comprises a 4-bar linkage, comprising links 703, 705 and
712 on the upper half, and links 704, 706, and 713 on the
lower half. In addition, four diagonal links 707, 708, 710 and
711, hold an additional link 709, which connects to the two
4-bar linkages via unanchored rotary joints. The functioning
of the mechanism is as follows: When one of the inputs 701
or 702, moves from O to 1, the respective 4-bar linkage is
moved. The movement of the 4-bar linkage, via either links
707 and 710 for the top half, or links 708 and 711 for the
bottom half, causes the rotation of link 709. Link 709, being
the same length as links 703, 704, 712, and 713, as well as
initially being at the same angle, allows either of the inputs
to assume a value of 1 by pivoting through the same arc that
the 4-bar linkage must follow when moved by an input.

[0162] However, once an input has moved either the top or
bottom 4-bar linkage, along with link 709, the other 4-bar
linkage (and so its associated input/output) is no longer free
to move. The reason is that link 709 is now not parallel with,
depending on which input was set to 1, links 703 and 712,
or links 704 and 713. Because of this, the rotation of link 709
will not follow that of the second 4-bar linkage, should it try
to move. In essence, one of the links (link 705 for the top,
if not already moved, or link 706 for the bottom, if not
already moved) will be trying to move through two different
arcs at once, resulting in the mechanism locking. This is
essentially a co-planar version of rotary joints being not-
coaxial (described elsewhere herein), but instead of the
rotary joint axes changing (which does happen, but these
axes were never co-axial in the literal sense to begin with),
the point here is that the arc through which the connected
links would move changes. Once one of the inputs is set to
1, the only allowed movement is to set that input back to 0
so that either (but not both simultaneously) sides are again
free to move to the “1” position.

[0163] The lock design of FIG. 7 has the property that it
locks quickly and unlocks slowly. For example, virtually any
movement of one of the inputs locks the other input. And,
once an input has been set to 1, locking the mechanism, that
input must be brought essentially all way back to 0 before
the lock unlocks. It may be desirable to design locks which
have more gradual locking properties, and this may have
advantages including smoother changes in entropy (result-
ing in reduced energy dissipation), reduced maximal force
on the mechanisms at a given switching speed, and a
reduced time between lock/unlock cycles, since there is less
concern that one input must be allowed to settle to almost
exactly O before the other input can start to move. The
inclusion of springs in connections to a lock can also aid in
the operation of a lock, as the mechanism can then be driven
as desired even when small positional errors are present
which would otherwise lock a mechanism which almost
instantly locks when not exactly in the unlocked position
(i.e., at “0”). Another method of accomplishing this is to
replace link 709 with a spring of the same length (or add a

US 2021/0149630 Al

spring and shorten the link) which has a suitably chosen
spring constant. If link 709 is, or incorporates, a very stiff
spring, the lock will allow only small positional errors. If
link 709 is, or incorporates, a softer spring, the lock will
allow larger positional errors.

[0164] FIG. 9 and FIG. 10 depict a lock where, due to
gradually changing torque as the mechanism moves from
unlocked to locked, the locking action is more gradual. FIG.
9 shows the lock when inputs 901 and 902, are 0, while FIG.
10 shows the state of the lock after input 901 has been set
to 1 while input 902 is still 0. Inputs 901 and 902 are
connected to the rest of the mechanism via unanchored
rotary joints. Note that the setting of one input to 1 results
in driving the other input backwards slightly in this design.
The overall system can be designed to allow this, or the
backwards motion could be kept internal to the mechanism,
such as by using springs that absorb such motion rather than
transmitting it directly to other links.

Being made of the same basic parts, all MLL mechanisms
tend to share similar concerns. The concepts of sudden
versus gradual changes in entropy, limiting maximum
forces, and designing mechanisms to allow reduced latency
between clock phases, can apply to any MLL mechanism,
not just locks.

[0165] Non-Co-Planar Mechanisms

[0166] Many of the mechanisms herein are of co-planar
design. While co-planar designs are emphasized for clarity
of presentation, MLLL. mechanisms need not be co-planar.
Any MLL mechanisms can be implemented in a manner
which is non-co-planar. For example, FIG. 11 depicts a lock,
constructed of links and rotary joints, which is not co-planar.
Rather, as will be subsequently explained, the rotary joints
allow the links to move perpendicular, rather than parallel,
to the face of the Anchor Block.

[0167] In FIG. 1 land subsequent views of the same
mechanism, link 1101 will be referred to as Link1, link 1102
as Link2, link 1103 as Link3, space 1104 as Openloint4,
space 1105 as Openloint5, space 1106 as OpenJoint6, space
1107 as OpenJoint7, rotary joint 1108 as Joint1, rotary joint
1109 as Joint2, rotary joint 1110 as Joint3, rotary joint 1111
as Joint4, and anchor block 1112 as the Anchor Block. The
Anchor Block provides anchor points for the rotary joints
Joint]1 and Joint4, which are connected to Link] and Link2,
respectively. Linkl is connected to Link2 by Joint2, and
Link3 is connected to Link2 via Joint3. All Joints and Link1,
Link2, and Link3 are shown in the unlocked position.
[0168] In the unlocked position, which may be referred to
as “(0,0)”, the axis of Joint3 is aligned with the axis of
Jointl, and the axis of Joint2 is aligned with the axis of
Joint4. Joint] and Joint 3 may thus be referred to as coaxial,
as can Joint2 and Joint4. If either Linkl or Link3 were to
pivot, one of their rotary joints would move out of their
current plane, and thus, depending on which link was
pivoted, some of the joints would no longer be coaxial with
each other (a condition referred to as “not-coaxial”). The
concepts of coaxial and not-coaxial are important as, in this
embodiment, these conditions are what define locked versus
unlocked. The reason for this is that in the unlocked position,
Link1 and Link3 each have an axis about which they might
pivot. For Link1, this is the axis defined by Joint]l and Joint
3 when they are coaxial. For Link3, this is the axis defined
by Joint2 and Joint4 when they are coaxial. When these sets
of'joints are not in the coaxial position, the lack of alignment
between the two axes prevents pivoting, as a rigid object

May 20, 2021

with one degree of freedom cannot simultaneously pivot
around two different axes. As a result, when either Joint1 and
Joint3 are not-coaxial, or Joint2 and Joint4 are not-coaxial,
the lock is locked and the only allowed motion is to return
to the unlocked position.

[0169] Note that technically, virtually any amount of piv-
oting of Linkl or Link3 would create a locked condition.
However, for the purposes of explanation, subsequent fig-
ures show about 30 degrees of rotation. This is arbitrary, and
any amount of pivoting which will allow the system to act
reliably could be used (as could any other angle, as opposed
to perfectly perpendicular to the face of the Anchor Block).
Analogously with the co-planar lock, if Link 2 were replaced
with a spring of similar length, the tolerance of the lock for
positional errors in its inputs could be increased, to the
extent thought desirable. It will be obvious given this
explanation that if either Linkl or Link3 were to pivot a
suitable amount, whichever link had not pivoted would then
be prevented from doing so until the pivoted link was
returned to the unlocked position.

[0170] To accomplish this pivoting, OpenJoint4 and
OpenJoint6 are connection points where other links could
connect to Link3, and Openloint5 and OpenJoint7 are
connection points where other links could connect to Link1.
These other links can serve as inputs to the lock. Link1 and
Link3 each have a pair of connections (OpenJoint5 and
OpenJoint7, and Openloint4 and OpenJoint6, respectively)
not to allow four inputs (although that is possible, that is not
the intent of this particular design), but rather to allow an
input line to continue on past the lock if desired. For
example, OpenlJoint5 may be thought of as a continuation of
OpenJoint7 (or vice versa) and OpenJoint4 may be thought
of as a continuation of Openloint6 (or vice versa).

[0171] FIG. 12 shows a top-view of the same mechanism
as FIG. 11, with only link 1101 and anchor block 1112 being
visible in this view.

[0172] FIG. 13 shows the same mechanism as FIG. 11, but
in a locked position that could be called “(1,0)”. In this state,
1101 has rotated, via rotary joints 1108 and 1110, making
rotary joints 1109 and 1111 not-coaxial. Because 1109 and
1111 are not-coaxial, 1103 is no longer free to rotate, hence
the locked state. The rotation of 1101 would be accom-
plished by other links (not depicted) connected to 1105
and/or 1107.

[0173] FIG. 14 shows a top view of the state of the
mechanism in FIG. 13. In this top view, it can be seen that
1101 has pivoted about 30 degrees counterclockwise. 1102
cannot be seen in this view, but would pivot with 1101 in this
instance, revealing 1103 below it. Note that the direction of
rotation is arbitrary. Both clockwise and counterclockwise
rotations would have the same effect of locking the lock.
This is true of 1103 as well.

[0174] FIG. 15 shows the same mechanism as FIG. 13, but
in a locked position due to the rotation of 1103 instead of
1102. This position could be called “(0,1).” In this state,
1103 has rotated, via rotary joints 1109 and 1111, making
rotary joints 1108 and 1110 not-coaxial, thereby locking
1101. The rotation of 1103 would be caused by other links
(not shown) connected to one or more of the Open Joints,
1104 and 1106, of 1103.

[0175] FIG. 16 shows a top view of the state of the
mechanism in FIG. 15. In this top view it can be seen that
1103 has rotated about 30 degrees clockwise, while 1101 is
still in its original position. As with 1101, the direction of

US 2021/0149630 Al

rotation is arbitrary. Either clockwise or counterclockwise
would allow proper function of the lock, and either or both
could be used.

[0176] Given these examples and the principles of MLL,
many other designs (for locks and all other MLLLL mecha-
nisms) will be obvious. The specific implementations which
work most efficiently may be case-dependent, and the exem-
plary embodiments herein are not provided as examples of
optimized mechanisms, but rather to demonstrate how all
elements necessary for a generalizable computational sys-
tem can be created using only links and rotary joints, and
that even within the constraints of only using links and
rotary joints, many different logical and mechanical options
are available, including virtually any type of logic gates,
reversible and irreversible, and mechanisms that largely
function in two dimensions (“co-planar”), or three dimen-
sions (non-co-planar), complete with robust routing of data,
at whatever angles are desired.

Balances

[0177] Force and motion can be transmitted from one end
of a link to the other end using a rotary joint about which the
link pivots. Such a mechanism will be called a “balance,”
since frequently the input is in the center of a link, and one
side moves “up” or “down,” conceptually similar to a classic
pan balance. Of course, the exact movement will depend on
the forces applied, the exact mechanism design, and the state
of the system.

[0178] A simple balance is depicted in two different states
in FIG. 17 (showing an input of O, the linear slide of input
1701 being retracted) and FIG. 18 (showing the same
mechanism with an input of 1, the linear slide of input 1701
being extended). In these figures, input 1701 is connected to
the link 1702 by rotary joint 1703. Upper rotary joint 1704
and lower rotary joint 1705 connect via links to upper output
1706 and lower output 1707, respectively. Upper rotary joint
1704 is anchored in these depictions, preventing upper
output 1706 from moving, while lower rotary joint 1705 is
unanchored, allowing lower output 1707 to move if input
1701 moves.

[0179] FIG. 19 depicts what would happen if upper rotary
joint 1704 and lower rotary joint 1705 were reversed (mean-
ing, if upper rotary joint 1704 were unanchored and lower
rotary joint 1705 were anchored), given an input of 1. The
output movement would occur at upper output 1706 instead
of lower output 1707. One of the interesting properties of
balances is that they can be designed to conserve the sum of
their inputs. In the foregoing example, if the input is 0, the
output is 0. If the input is 1, the output is 1. This would be
true of a simple line as well, but complex balances with
multiple inputs can be constructed that still sum their
outputs.

[0180] Another advantage to balances is that they can
route data differently depending on other input. Other input,
for example, may control the state of locks connected to a
balance. The locks act as conditional anchors, routing data
down one line or another depending on the state of the locks
and allowing a balance to function as a switch, or “switch
gate.” For example, a single balance with conditional
anchors could be put into any of the configurations shown in
FIG. 17, FIG. 18, and FIG. 19, since the anchor points can
be changed (this concept is demonstrated in subsequent
figures).

May 20, 2021

[0181] FIG. 20 and FIG. 21 illustrate one way in which
balances with multiple inputs can be used to conserve the
sum of the inputs, and to route data. Two states of the same
mechanism are depicted, which is formed by connecting two
2-input balances together (a “binary double balance™).
Inputs 2001 and 2002 are connected to link 2005 by rotary
joints. Link 2005 is connected to link 2007 via a rotary joint.
Link 2007 connects to link 2006 via a rotary joint. Link 2006
connects to outputs 2003 and 2004 via their respective rotary
joints. The fixed length of link 2007 causes the sum of the
inputs to be conserved. Since link 2007 cannot change in
length, if either input 2001 or 2002 moves, a corresponding
move must take place at output 2003 or 2004. FI1G. 20 shows
the state of the mechanism when input 2001 is 1, and input
2002 is 0. FIG. 21 shows the state of the mechanism when
input 2001 and 2002 are both 1. Note that the mechanism in
these figures (as is frequently the case due to the complexity
of more complete systems and the need for clear illustrations
of the basic underlying mechanisms of MLL) is not attached
to other mechanisms as it would be in an actual MLL
system. In this particular case, without additional constraints
this mechanism will not be reliable. For example, when
moving from an input of (0,0) to (1,0), the sum of the outputs
must be 1, since the sum of the inputs is 1. However, there
is no way to tell if the outputs will be (0,1) or (1,0), or even
something like (0.5,0.5). In an actual system, one way of
solving this problem is with locks. By conditionally locking
one of the outputs, the other output is forced to move in a
predictable manner.

Switch Gates

[0182] As previously described, balances, in conjunction
with locks, are one way in which a switch gate can be
implemented. FIG. 22 shows a switch gate with a top input
2201, a bottom input 2202, and a center input 2203. The
middle input is connected, via a balance, to top output 2204
and bottom output 2205. The top and bottom inputs control
whether the middle input is routed to the top output or the
bottom output. For example, if top input 2201 is set to 1,
then the upper lock to which top input 2201 is connected, is
locked. Since that means that the line going to top output
2204 cannot move, when an input of 1 is provided at middle
input 2203, the balance to which middle input 2203 is
connected must move the line which leads to bottom output
2205. The top and bottom input would generally never both
be 1 at the same time, so these could actually be condensed
into one input which controls both locks, e.g., and input of
0 locking the upper lock, and an input of 1 locking the lower
lock, or vice-versa.

[0183] Binary double balances coupled with locks can also
be used as switch gates. Given a binary double-balance, one
input is locked permanently, while one input is unlocked
permanently and connected to an input (typically a clock). A
single line can then be used to switch two complementary
locks that are connected to the two remaining inputs of the
double-balance. In essence, the clock input is routed through
the double balance to one or the other “input” by the single
line which controls the two complementary locks. Note that
switch gates (and other MLL mechanisms that have locked
states) can be used even when dry switching is desired. In
the case of a switch gate like that in FIG. 22, the clock force
is applied via a balance connecting two locks. Since the
system can be designed so that both locks are never locked
simultaneously when the clock force is applied, one side is

US 2021/0149630 Al

always free to move. Therefore, the clock force is not
directed to an immobile mechanism, but rather to a mecha-
nism that is always conditionally mobile in one direction or
the other.

Logic Gates Using Locks and Balances

[0184] An interesting property of locks and balances is
that they can be used to create all the traditional logic gates
(in addition to other mechanisms), reversible and irrevers-
ible. Before describing one way in which this can be done,
it will facilitate understanding the exemplary lock-based
logic gate to discuss an alternate method of providing input
to a mechanism (in this case, a lock). It is typical to think of
one binary input as being a single connection to a line. For
example, in the previously-described logic gates such as
AND, NAND, NOR, and XOR, these logic gates each took
two inputs, often represented as two linear actuators, but
what in an actual MLL system would be, e.g., two connec-
tions to data lines. The Fredkin gate takes three inputs, and
so had three locations where data lines could be connected.
Each of the inputs to these exemplary logic gates was binary,
meaning, the mechanism was designed such that one posi-
tion represented 0, while a second position represented 1.
Although other implementations are possible, frequently an
input of 0 has been represented as no movement occurring
at that input, while an input of 1 was represented by some
forward or rightward movement.

[0185] However, there are other ways to represent input.
For example, instead of a binary input using one connection
which provides one of two possible values (0 or 1), a binary
input could consist of two connections, one representing 0,
and the other representing 1. In this scenario, one of the
connections to an input would always move: The O line
would move if the input was 0, and the 1 line would move
if the input was 1. This is in contrast to 0 being previously
represented by no movement of an input. This strategy of
using two lines per binary input is useful with locks because
it allows either value, O or 1, to create a locked state. An
input of 0 locks one side of the lock, while an input of 1
locks the other. One use to having both 0 and 1 resulting in
a locked state on different sides is that this permits a lock to
act as two different conditional anchor points. This can, for
example, be used to control which side of a balance moves
when input is fed into the balance. The following example
shows a mechanism which illustrates how this property of
locks can be combined with balances to create logic gates.
[0186] FIG. 23 depicts one way in which a NAND gate
can be constructed using locks and balances. Clock input
2301 is connected to balance 2302, which is in turn con-
nected to balance 2303, which is in turn connected to
balance 2304. Via a series of locks and lines, the clock input
is then routed to balances 2305 and 2306, and finally results
in the movement of upper output 2312 or lower output 2311.
Inputs 2307 to 2310 provide inputs to the gate, with four
input lines being used to represent two binary inputs, as
previously described. Specifically, input 2307 will be
referred to as “A0” (meaning that it is associated with input
“A,” and will move if the “A” input is 0), input 2308 as
“B0,” input 2309 as “A1l,” and input 2310 as “B1.” Note that
for inputs 2307 to 2310, there are two inputs each with the
same label. This is because the same input data is used in
two different places within the gate. In reality, this would not
require two separate inputs for each, but rather one input for
each could be forked using simple rod-like links, or con-

May 20, 2021

nected to a single link which provides multiple connection
points. The depiction in FIG. 23 was chosen for clarity, not
because this need be exactly how the mechanism is actually
implemented (which is generally true for all the mechanisms
described herein). The mechanism works as follows: If
actuated, inputs 2307 to 2310 move the side of the gate to
which they are connected, and lock the gate. In other words,
if the input (A,B) is (0,1), the A0 lines will move, and the Bl
lines will move. Since A is not 1, the A1 lines will not move,
and since B is not 0, the BO lines will not move. Obviously,
and input, (0,0), (0,1), (1,0) or (1,1) is allowed. The inputs
establish a pattern of which gates are locked and which are
not. This pattern in turn determines which side of each
balance is free to move. The clock input then actuates the
balances, with the end result being that either bottom output
2311, representing (A NAND B)0, will move, or top output
2312, representing (A NAND B)1, will move. The resulting
output generates the NAND truth table:

Inputs Qutputs
Al A0 Bl BO (A NAND B)l (A NAND B)0
0 1 0 1 1 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 0 1
[0187] As has already been mentioned, NAND is a uni-

versal gate. Therefore, it follows from this example that a
system of locks and balances could be used to design any
other desired logic gates, reversible or irreversible, using
combinations of NAND gates. However, this may not be the
most efficient way to implement any desired logic, and
similar lock and balance-based mechanisms can be used to
implement any other logic gate directly, including AND,
OR, NOR, XOR, XNOR, NOT, CNOT, Toffoli and others.

[0188] One implementation of a Fredkin Gate was already
described. Locks and balances can also be used to build a
Fredkin gate. A Fredkin gate has three inputs and three
outputs. The three inputs will be called A, B, and C, and the
three outputs X, Y, and Z. Input A always connects to Output
X. If Input A is 0, then Input B connects to Output Y and
Input C connects to Output Z. If Input A is 1, then Input B
connects to Output Z and Input C connects to Output Y. As
previously noted, Fredkin gates are universal gates, meaning
that any logical or arithmetic operation can be computed
with only Fredkin gates. This is not to say that a practical
MLL computing system need be composed solely of Fredkin
gates, as this would not necessarily be the most efficient
configuration for many computing tasks. As will be obvious
from the teachings herein, many other types of gates can be
implemented using MLL. Fredkin gates are used as one
exemplary embodiment because they are both universal and
reversible.

[0189] FIG. 24 depicts a Fredkin gate made using locks
and balances. Due to the complexity of the mechanism, a
simplified notation is used where anchored rotary joints are
not explicitly shown, but assumed to be on the unconnected
ends of appropriate links. The clock input or signal (actuator
not shown, as with all inputs to this mechanism) would be
attached to rotary joint 2401. Input for Al, A0, B1, B0, C1
and CO input would be attached to rotary joints 2402, 2403,
2404, 2405, 2406 and 2407, respectively. B1, BO, C1 and CO

US 2021/0149630 Al

inputs would also be connected to rotary joints 2408, 2409,
2410 and 2411, respectively. The clock signal and inputs are
connected via a series of links and locks, and for some
outputs, balances, to X1 output 2412, X0 output 2413, Y1
output 2414, YO output 2415, Z1 output 2416 and Z0 output
2417. Note that the X1 and X0 outputs are not shown on the
right side next to the other outputs to reduce figure com-
plexity. In reality, obviously they could be routed to any
location desired. Note that links 2418 and 2419 are part of
4-bar linkages, not balances, constraining these links to stay
vertical when moving. Black triangles 2420 and 2421 exem-
plify rigid linkages (a straight line is not used to avoid a
representation with excessive lines which cross each other,
and this representation is only diagrammatic; the actual
mechanisms could be implemented in many ways).

[0190] The blank state is depicted in FIG. 24. Conceptu-
ally, from this state, the A, B, and C inputs are set during one
clock phase. During a subsequent clock phase, the clock
signal connected to rotary joint 2401 is set to “1,” which
causes the movement of the various balances within the
mechanism, resulting in the X, Y and Z outputs being set as
appropriate. While one straightforward approach to building
a system would be to use Fredkin gates throughout, and to
use three-phase Landauer Clocking, other approaches are
feasible. As will be obvious from the various well-known
clocking schemes, there may be additional clock phases, and
using Bennet Clocking, the number of clock signals will
depend on the number of steps one desires to allow in a
retractile cascade.

Shift Registers

[0191] Shift registers can be used as a foundation for
implementing sequential logic in a computational system.
For example, two numbers to be added, subtracted, ANDed
or ORed are stored in two shift registers and clocked out into
an arithmetic and logic unit consisting of a handful of gates,
with the result being sent to the input of a third shift register
called the accumulator. In reversible digital circuits, a shift
register can be defined as a series of “cells,” each cell having
three stable states: 0, 1 and blank (b), which can be used to
store state information. The cells are clocked by successive
clocks. The output of each cell is connected to the input of
the next cell in the chain. The data stored in the chain is
shifted by one position after each clock cycle; data (0,1, or
b) at the input is shifted in while data at the end of the array
is shifted out. Binary clocked shift registers can be imple-
mented using only the clocks and the rotary joints connected
by links (creating locks and balances) previously described.
Shift registers are simple, yet when combined with the
appropriate combinatorial logic, contain all the fundamental
elements required for a computational system.

[0192] A shift register can be built by combining locks and
balances, and assuming the presence of a clock system, so
that each cell (which might be viewed as a flip-flop, and
which may also be thought of as a buffer and can be used to
synchronize clock phases of different processes by introduc-
ing clock phase delays) of the shift register is related to its
neighbor by virtue of relying upon a preceding or succeed-
ing clock phase, as appropriate. This enables the copying
and shifting of data through the shift register, rather than
deterministically setting the contents of the entire shift
register simultaneously.

[0193] FIG. 25, FIG. 26 and FIG. 27 depicts a single cell
of a shift register, in three different states. In these figures,

May 20, 2021

the O input 2501 is connected via a rotary joint to one side
of lock 2505. The 1 input 2502 is connect via a rotary joint
to one side of lock 2506. Clock signal 2503 (although
diagrammed differently to provide a mechanism that is more
complete when standing alone, this would, in an actual
system, be a connection to the clock system), is attached to
balance 2504. Locks 2505 and 2506 determine which of the
outputs 2507 or 2508 move when the clock signal becomes
1. The lock which contains outputs 2507 and 2588 can be
thought of as the output lock for the overall cell, while locks
2505 and 2506 are holding area locks. The importance of
this concept will become clear when connecting multiple
cells in series.

[0194] FIG. 25 depicts the cell in its blank state, before
any input has been provided, and while the clock signal is
low or 0. FIG. 26 depicts the cell after input 2501 has been
set to 1, but before the clock signal has moved to high or 1.
This results in the locking of lock 2505.

[0195] FIG. 27 depicts the mechanism from the previous
state once the clock signal has moved to high. As clock
signal 2503 pushes on balance 2504, because lock 2505 is
locked, only one side of balance 2504 is free to move. Thus,
the clock signal moving to high is transmitted through lock
2506 and to output 2508. Note that the movements between
states such as those illustrated in FIG. 25, FIG. 26 and FIG.
27 do not take place simultaneously but rather are governed
by clock signals and data inputs (which themselves may be
tied to clock signals). This sequential behavior is what
allows the proper functioning of this cell or buffer (also
analogous to a latch in electronic computing). Such behavior
is easy to realize and well-known in electrical implementa-
tions, but more involved in a mechanical implementation.
[0196] FIG. 28a, comprising the left half, and FIG. 285,
comprising the right half, collectively depicts a two cell shift
register to illustrate how two cells would be connected and
to explain how data would move from one cell to the next.
In FIG. 28a, cell 1 2801, and in FIG. 285, cell 2 2802, are
each equivalent to the mechanism depicted in FIG. 25. In
FIG. 28a, cell 1 2801 has a connection to a clock signal via
link 2803 (depicted as a partial link to indicate connection to
a clock system that is not shown), and in FIG. 285, cell 2
2802 has a connection to a clock signal via link 2806. Links
2804 and 2805 connect the cell 1 2801 and cell 2 2802.
[0197] LikeinFIG. 25, FIG. 26 and FIG. 27, a multi-phase
clock signal is assumed to be present, and links 2803 and
2806, and the data inputs associated with each cell would
preferably all operate on different clock phases, requiring at
least a three-phase clock for this particular design. The
operation of a single cell has already been described, but
demonstrating how cell 1 2801 passes data to cell 2 2802
may be instructive. The sequence of events is as follows: (1)
on clock phase 1, the clock for cell 1 2801 was already at O,
and the data inputs are set for cell 1 2801. Either the upper
or lower lock of cell 1 2801 locks, depending on which input
was set to 1; (2) on clock phase 2, the clock signal for cell
1 2801 is set to 1. This results in the unlocked side of the
balance present in cell 1 2801 moving, which in turn moves
either link 2804 or link 2805. This locks one of cell 2°s 2802
holding area locks, copying the data from cell 1 2801 into
cell 2°s 2802 holding area. Note that the output lock of cell
2 2802 still has not moved; (3) on clock phase 3, the clock
signal for cell 2 2802 is set to 1. This copies the data from
the holding area locks into cell 2’s 2802 output lock. In
detail, one of cell 2°s 2802 holding area locks was already

US 2021/0149630 Al

locked, so when the clock signal for cell 2 2802 changes
from 0 to 1, only the unlocked line could move. When this
unlocked line moved, it locked cell 2°s 2802 output lock. It
also locked the second of cell 2’s 2802 two holding area
locks; and (4) the clock signal for cell 1 is set to 0. This
unwrites cell 1’s 2801 data from cell 2 2802 by unlocking
only the cell 2 2802 holding area lock that was originally
locked when cell 1’s 2801 clock was set to 1, as the other
lock was just locked by the clock signal to cell 2 2802. This
cycle then repeats itself as new data is input into cell 1. In
step 2 above, it is noted that the output lock of cell 2 2802
still has not moved. This allows these exemplary shift
register cells to store previous data, whereas mechanisms
such as some of the logic gates described herein have their
state completely determined by the current data inputs. This
is because a cell can contain not only a previous input
(which ends up being shifted to its output lock during clock
phase 3), but also the current input, which is stored in the
holding area locks.

[0198] It will be apparent from this description that if
reversibility at the shift register cell (or other mechanism)
level is desired, all that need be done is to run the clock
phases in the opposite order. If a retractile cascade is desired,
then a scheme like Bennett clocking can be used, coupled
with the appropriate hardware design (e.g., the ability to
store “junk” bits so that no information is lost, allowing the
computation to be reversible to as many levels deep as
desired). In the current example, the shift register being only
2 cells long, only 2 numbers can be stored. In an actual
system, such a shift register can be arbitrarily long. Further,
while this particular implementation is a serial-in/serial-out
design, it will be obvious given this example that MLL can
be used to make any other type of shift register desired, such
as parallel-in/parallel-out, serial-in/parallel-out, and others.

Momentum Cancellation

[0199] It can be useful to perform computation without
altering either the center of mass or the moment of inertia of
a group of computing structures, so that the forces that these
changes would cause are not coupled to the overall system,
potentially contributing to energy dissipation. This can be
accomplished by using sets of structures whose movements
cancel out changes in the center of mass or the torque around
any axis (a “canceling group”). Such techniques can apply
to any structure, such as links, lines, locks, logic gates,
balances, clocks, and larger aggregate structures. For
example, consider a link or line which is used to transmit
data from one place to another. Such a structure may be
replaced with four parallel structures, conceptually grouped
as two pairs. Each member of a pair moves in the opposite
direction, canceling changes in the center of mass and linear
momentum. However, each pair could still create torque. So,
the direction of movement of each link is reversed from the
first pair to the second pair, resulting in torque cancellation.
Given this type of arrangement, no net force is coupled to the
overall device and so such canceling groups can be used to
transmit data while reducing energy coupled into the rest of
the structure.

[0200] FIG. 29 illustrates this concept using groups 2901
and 2902, each containing two members, 2903 and 2904,
and 2905 and 2906, respectively. Within a group, each
member moves in the opposite direction from the other
member (while each member is not connected to the others
in the diagram, in an actual system movements would be

May 20, 2021

synchronized, e.g., by clock signals). For example, as
depicted, member 2903 has moved to the right, while
member 2904 has moved to the left. The accelerations that
take place during these movements will generate forces on
the underlying support structure (the anchor block, not
shown). Since members 2903 and 2904 accelerate in oppo-
site directions, the linear components of their momentum
will cancel. However, in this arrangement they will still
generate a net torque on the anchor block. Adding the second
pair of members 2902 containing members 2905 and 2906,
which also move in opposite directions within the pair, but
generate a torque that is opposite the torque of group 2901,
allows complete cancellation.

[0201] Obviously, many other designs could be used to
either cancel momentum, or reduce the need to do so in the
first place (e.g., by reducing mass, or reducing the radii to
centers of rotations). Given this, momentum cancellation is
not limited to any particular arrangement. Nor are cancelling
groups limited to some specific number of members. Even
odd numbers could be used, such as where the members of
a canceling group do not have the same masses or momen-
tum. For example, two members could be used to cancel one
other member that generates twice the momentum. And,
momentum cancellation need not be complete. Additionally,
forces along any axis may be addressed similarly. For
example, in actual designs, forces which cause torque along
the Z axis, which is defined for this example as perpendicu-
lar to the figure plane, may also need to be cancelled. The
complexity and increased mass of complete cancellation
may outweigh the benefits, and the appropriate amount of
cancellation (if any), and which force components to cancel,
if any, will vary on a case by case basis.

Clocks

[0202] Inan MLL system, a clock system synchronizes the
mechanisms, and also provides force to drive the mecha-
nisms. It is well-known in the field of computer science that
computational systems with different numbers of clock
signals (or phases) can be used. At least 2 phases are
required, but 3 phases can be advantageous, and higher
numbers can also be used. An MLL clock system could
consist of one or more clocks which create a plurality of
clock signals. These signals could take the form of recipro-
cating motion transmitted through the mechanisms, such as
via lines, or the use of rigid frames (which are actually just
links of specialized shape, for example, a rigid frame could
connect to a clock at a single location, and then branch out,
potentially in multiple directions or dimensions) to connect
to many gates or other mechanisms), supported by support
links as necessary. The optimal number of mechanisms
connected to a single clock or clock signal will be imple-
mentation-specific, depending on factors like the mass
which is being driven, the rigidity of the system, and the
switching speed. Alternatively, clock signals could be gen-
erated by multiple local clocks, such as oscillators or rotat-
ing masses, with communication between the clocks as
required to keep them synchronized.

[0203] Clock signals could be generated in a variety of
ways. For example, rotating masses, harmonic oscillators, or
cams and cam followers could all be used, creating periodic
motion in links where, for example, one position may
represent “0” and another position may represent “1”. A
rotating mass, which is essentially a flywheel, can serve as
a simple oscillator. Flywheels, coupled to links by rotary

US 2021/0149630 Al

joints, could be used to drive each clock signal back and
forth and require no parts beyond links and rotary joints. A
flywheel could be kept in constant motion by some sort of
energy source or motor, which replenishes the energy lost to
dissipative mechanisms in the system. A discussion of
exactly how such an energy source or motor might be
implemented is beyond the bounds of the invention. It is
obvious from the literature, which contains substantial work
on both macro-scale motors, and molecular-scale motors,
including bio-motors (e.g., ATPases, flagella) and synthetic
motors, that there are many ways to implement such motors,
and many ways to power such motors, including chemical,
light, direct current, and external electrical fields.

[0204] Other designs for clocks introduce parts beyond
links and rotary joints, and so do not technically fall under
the definition of MLL. However, as the use of alternate
clocking systems connected to an MLL system may have
utility, it is described how such alternate clock implemen-
tations can be designed for minimal energy dissipation.
Further, since a single clock can drive many logic elements,
even if the clock itself were to be somewhat dissipative,
overall, computation could still be quite efficient.

[0205] One alternate clocking system would be to use
simple harmonic oscillators, preferably with a high Q factor.
The use of simple harmonic oscillators has the advantage
that a single clocking frequency would be used, and that the
clocking frequency would be provided by a very simple
mechanism. Using such an oscillator, components would
preferably be designed to use sine-like clock signals (includ-
ing signals with sine-like transitions between 0 and 1 with
flat areas in between for timing purposes), and designed in
such a way that they did not generate significantly higher
frequency overtones during operation (as, for example, if
one moving part collided with another moving part). Alter-
natively, a sum of simple oscillators could be used, the sum
approximating the desired clock signal. The use of a suffi-
cient number of oscillators could, in principle, approximate
the desired clock signal as accurately as desired, at the
expense of additional parts. One way to implement a har-
monic oscillator is with a spring (in which is included a
flexure or other structures of similar purpose), which could
be made of any material with the appropriate properties and
spring constant, including the same materials as the links.

[0206] Cams and cam followers are another way to gen-
erate a clock signal (one example is shown in FIGS. 45 &
46). A cam and cam follower can be used to generate a very
smooth clock signal, as is subsequently described. A cam
can also be used to generate a clock signal with an essen-
tially arbitrary waveform. A cam could be made, for
example, from a rotating link supported by rotary joints at
either end. The link thus forms an axle which can be used as
a camshaft. The cam would be affixed to the camshaft (or the
camshaft could actually be the cam, assuming it has the
appropriate cross-sectional shape). A cam follower could be
constructed, for example, using a wheel connected to two
rotary joints, connected to a lever arm. Rotating the cam-
shaft would rotate the cam. The cam follower wheel would
ride up and down on the cam, causing the lever arm to go up
and down along with it. The lever arm would be a link in a
suitable linkage. Many other geometries and relative posi-
tions for the cam and cam follower could be used, including
designs where the cam follower surrounds the cam, or vice
versa, such as with an eccentric rotor and stator, as well as
variations in the types of motion the cam makes, such as

May 20, 2021

designs where the cam simply rocks back and forth, or
moves in a manner that is itself under programmatic control,
as well as combinations of the foregoing and obvious
variations.

[0207] While it may not be obvious how smooth curves
can be made at the molecular level, since angles and
distances are quantized by the nature of chemical bonds, this
issue can be overcome. For example, in diamond, buried
Lomer dislocations could be used to create smooth curves on
the surface of a Lonsdaleite (hexagonal diamond) cam.
Similarly-gradual changes could be accomplished with dia-
mond and other materials, by using changes in bonding
patterns, the incorporation of elements of varying atomic
radii, using strain to slightly displace an atom or atoms, or
using naturally curved structures such a nanotubes. Using
these strategies, a molecular implementation of cam and cam
followers (and indeed, any pieces of such a system) could be
made to almost arbitrarily precise tolerances, even to dis-
tances below a single atomic diameter.

[0208] Using a rotating mass to generate clock signals
requires only rotary joints and links, the basic parts of MLL
systems. If a cam and cam follower were used, the rotary
joints connecting the cam follower’s lever arm to the wheel,
and those which allow the cam to rotate, have again, already
been discussed. However, in a cam-based system, there is
rotating contact between the cam and cam follower wheel
surfaces, a situation not present when considering the basic
parts of MLL. While this may seem like a mechanism that
creates undesirable sliding friction, it need not be. The two
surfaces do not have to slide over each other, but rather
rotate synchronously. Analysis indicates that, especially
given a molecular-scale, atomically-precise (or nearly so)
implementation, the energy dissipation from such a mecha-
nism would be very low.

[0209] In such a molecular-scale mechanism, the very
slight distortion in the shape of the wheel and the very slight
variation in attractive force (van der Waals, or “VDW”)
between the surface and the wheel could cause very slight
phonon generation. Viewed in the frame of reference of the
cam follower, the wheel and surface would be static other
than the very high frequency shifting of the crystal structures
within them. As a consequence, there should be no genera-
tion of low frequency phonons. And, inertia and positional
uncertainties caused by thermal noise will prevent the
mechanism from being able to reproduce the highest fre-
quency components in the signal on the cam, even in the
absence of a low pass filter on the output (which could be
used if desired, and could be implemented, e.g., as a simple
spring and mass device).

[0210] Also, various cancelation methods could be used to
minimize the high frequency signal component that is
encoded on the cam’s surface. This might be done, for
example, by using a plurality of cam follower wheels that
read a plurality of tracks on the cam surface, each track
being staggered by some distance. Attaching each cam
follower wheel to the cam follower would then effectively
sum or average their outputs, canceling at least some of the
high frequency noise signal. Any number of tracks and cam
follower wheels could be used, with any desired shape for
each track (e.g., different canceling signals could be encoded
in each track), resulting in arbitrary accuracy of the aggre-
gate signal. Another method to reduce high frequency noise
would be to rotate the crystal axis of the material from which
the cam is made, and perform a corresponding rotation of the

US 2021/0149630 Al

crystal structure of the wheel which is meshing with them.
By choosing the crystal rotation and width of the cam and
cam follower appropriately, other high frequency signals
may be eliminated due to the change in timing and atomic
spacing as the cam contacts the cam follower wheel. Yet
another method of reducing the transmission of high fre-
quency signals is to reduce the stiffness of the coupling of
the cam and cam follower to the rest of the system. For
example, reducing the spring constant of the cam follower
arm, or reducing the stiffness of the bonds on which the cam
follower is mounted, would help filter high frequency sig-
nals.

[0211] Given these examples, it will be obvious that these
are not the only ways to reduce high frequency components.
There are many ways to ensure that parts in rotating contact
do not create or transmit high frequency signals, and the use
of atomically-precise parts in particular allows the minimi-
zation of such signals. As the cam follower rises and falls on
the curved cam surface, following the clock signal encoded
in that surface, it will subject the cam surface to inertial
forces. Each acceleration or deceleration of the cam follower
will create a corresponding force on the surface of the cam.
These periodic forces will create phonons at the clock
frequency. This source of energy dissipation can be canceled
if two cam followers follow two cams, the two cams
encoding equal but opposite signals. And, since the clock
frequency is arbitrary, this frequency can be reduced until
energy dissipation caused by coupling of the high frequency
components of the clock signal to mechanical vibrational
modes is under desired levels. Note that the cam follower
mechanism described can exert a relatively strong force
when the cam is pushing on the cam follower. However,
during movement in the opposite direction, the force is
limited by the van der Waals force between the cam and the
wheel. This can be rectified, if need be, for example, by
using two cam followers and two cams (with the encoded
signals appropriately rotated with respect to each other),
where the cam followers are on opposite sides of their
respective cams. The first cam follower can exert a strong
force in one direction, while the second cam follower can
exert a strong force in the opposite direction.

Exemplary Switching Time Analysis

[0212] The basic constitutive equations of simple Newto-
nian motion and assumptions about the size and physical
strength of links can be applied to an analysis of the
switching time, mass, force, and resonant frequency for a
molecular scale implementation of MLL mechanisms. To
provide a concrete example, several assumptions must be
made, all of which could vary greatly depending on the exact
implementation, but the exact performance of a given sys-
tem is not the point, rather, the goal is to calculate an
estimate of one possible operating speed of an exemplary
molecular-sized system. Links are assumed to be ~20 nm in
length and about 0.5 nm to 0.7 nm in diameter. Links are
assumed to be made of diamond or similar material, and to
be braced to increase their stiffness (e.g., a beam with
triangular bracing, rather than just a straight beam). The
positional difference between “0” and “1” is assumed to be
~2 nm. Rotary joints are assumed to be like those shown in
FIG. 1, and the system is assumed to be operating a room
temperature. These assumptions allow the calculation of link
and rotary joint stiffness. To determine the resonant fre-
quency, mass must be determined.

May 20, 2021

[0213] The mass of a typical mechanism can vary widely.
Even using a given type of link, the mass will be quite
different depending on whether the mechanism is a single 4
bar link, a lock, a balance, a logic gate, etc., and on the exact
implementations of such structures. To use round figures, the
moving mass of a link might be about 8x10~® kg, while the
moving mass of a mechanism made of several links might be
on the order of 107! kg. Using these assumptions, the
resonant frequency for an exemplary molecular-scale
mechanism may be around 13 GHz. A square wave clock
signal would lead to substantially higher than necessary
energy dissipation. Therefore, it is assumed that the clock
waveform is generated as a sinusoidal wave, convolved with
a Gaussian to reduce undesirable high frequency compo-
nents, or optimized using standard linear systems theory to
minimize the generation of undesired resonances. In addi-
tion, to be conservative, the clock can be operated at a
frequency well below the 13 GHz resonant frequency cal-
culated. Depending on various assumptions, such as just
how much energy dissipation is acceptable, and with how
much margin for error, this results in switching times in the
1 ns to 10 ns range. Obviously, this is only exemplary.
Larger structures would likely operate at slower speeds,
while smaller structures, stiffer structures, designs which
move shorter distances between “0” and “1”, lower operat-
ing temperatures, or relaxation of some of the conservative
design parameters assumed, would result in faster switching
times.

MLL Summary

[0214] MLL has been shown to be able to create mecha-
nisms including lines, logic gates, locks, balances, switch
gates and shift registers, using only rotary joints and links.
MLL provides for any combinatorial logic by using various
combinations of logic gates which, either alone (e.g., NAND
or Fredkin gates) or in aggregate, are universal. Sequential
logic, and therefore memory, can be provided by flip-flops or
cells, which can be combined into shift registers.

[0215] Given the availability of both combinatorial logic
and sequential logic, it will be obvious that a complete
computational system can be built using MLL. For example,
the Von Neumann architecture, a well-known Turing-com-
plete architecture, requires three main components: A con-
trol unit, an arithmetic logic unit, and memory. Using
combinatorial logic and flip-flops, a finite state machine can
be created which can be used as a control unit. Combina-
torial logic can be used to create an arithmetic logic unit.
And, flip-flops can be used to create memory. This is all that
is needed for a complete computational system. Of course,
such a system does not need to be based on the Von
Neumann architecture; this is simply an example to illustrate
the fact that all the necessary components of a Turing-
complete system can be provided using MLL. Depending on
the exact mechanisms used, and the clocking scheme
employed, an MLL-based computational system can be
irreversible, reversible, or some combination thereof. The
ability to create mechanical computing mechanisms, and
complete computational systems, using only links and rotary
joints can provide advantages which include reduced friction
(and therefore power consumption and waste heat genera-
tion), device design and manufacture simplification, and
device robustness (e.g., operation at more extreme tempera-
tures than permitted by many other known computational
systems, given that mechanical logic could function up to

US 2021/0149630 Al

near the melting point of its constituent parts, whereas,
electronic computing suffers from bandgap issues at extreme
temperatures).

Mechanical Flexure Logic

[0216] Flexures can take the place of the rotary joints used
in MLL, resulting in Mechanical Flexure Logic (“MFL”).
With the substitution of flexures for rotary joints, all MLL
mechanisms have analogous MFL mechanisms. For
example, FIG. 30 shows the MFL version of the MLL lock
depicted in FIG. 7. Link ends 3001 and 3002 of links 3003
and 3004, respectively, are one place where input mecha-
nisms could be connected. Anchored link ends 3007 and
3008 of links 3003 and 3004, act in a manner analogous to
anchored rotary joints. Note that there are no actual rotary
joints present in the MFL version of a lock. Rather, flexures,
exemplified by the semi-circular cutouts 3005 and 3006,
provide bendable points between various parts of the struc-
ture. These flexures allow force, which may be input at link
ends 3001 or 3002, to be transmitted through triangular links
3010 or 3011, respectively, and on to link ends 3012 or 3013
(which may be thought of as outputs), respectively. Link
3009 serves the same purpose as link 709 in the co-planar
MLL lock of FIG. 7. The entire mechanism of FIG. 30 can
be made (although it need not be) from a single piece of
material, where the different links are monolithic, but logi-
cally separable because they are bounded by flexures.
[0217] Overall, the movement and function of the MFL
and MLL locks is completely analogous, but changes in the
relative angle between links in MFL are facilitated by
flexures instead of rotary joints. While locks are used to
demonstrate the analogy between MFL and MLL, it will be
apparent that the same analogies can be made between any
mechanisms, and therefore by replacing rotary joints with
flexures, a Turing-complete system can be made using MFL.
Of course, flexures require suitable materials, which may
differ from that of links, and the geometry of flexures need
not be only that depicted in FIG. 30. Flexures are well-
known in the mechanical arts, and suitable designs and
materials could be adapted for almost any degree of motion,
size, operating temperature, or other parameters.

Mechanical Cable Logic

[0218] Another method of implementing computing
mechanisms and systems which are analogous to MLL (and
hence also to MFL) is to replace links and rotary joints with
cables, pulleys, and knobs. This design paradigm will be
referred to as Mechanical Cable Logic (“MCL”). With
respect to the basic parts, or primitives, MCL cables are
analogous to MLL links, and MCL pulleys are analogous to
MLL rotary joints. Knobs are an additional primitive that do
not have a direct counterpart in MLL, or MFL. Knobs are
used to aid in the interaction of cables, for example, to create
locks, and in that respect, aid in the building of mechanisms
with analogous logical functions, even if the part itself does
not have a direct analog. It will be obvious given the
teachings herein, that by applying force to a cable, move-
ment can be transmitted down the cable and to other
mechanisms as desired (hence their analogy to links). Simi-
larly, it will be apparent that pulleys can be used to, among
other purposes, allow bends in cables so that movement can
be routed in any direction desired (hence their analogy to
rotary joints).

May 20, 2021

[0219] The MCL primitives can be used to create, among
other structures, balances and locks. While MCL implemen-
tations of balances and locks may look different than their
MLL counterparts, viewed from a “black box™ perspective,
MCL balances and locks can be implemented so as to be
logically equivalent to the respective mechanisms in MLL.
Given this, MCL also provides for Turing-complete systems.

Tracks and Channels

[0220] Like MLL rotary joints, MCL pulleys can be
anchored or unanchored. However, in MLL links are rigid
and this aids in constraining the movement of unanchored
rotary joints. In MCL, cables are not rigid, so the proper
geometric constraints need to be provided in a different
manner. One way to do this would be to keep tension on the
appropriate cables (e.g., clock cables) so that pulleys con-
nected to such lines cannot move unless, in this example, the
clock lines move, in which case pulley movement is con-
strained to the path the clock cables define. Another way of
addressing this issue would be to mount pulleys on links
where such constraint was necessary (although another
primitive is then required, and since this blurs the distinction
between MLL and MCL, such an embodiment is not
addressed further). Yet another way is the use of channels,
tracks, or other guiding means on the anchor block. By
virtue of being affixed in a sliding manner to the guiding
means, the motion of unanchored pulleys are appropriately
constrained.

[0221] FIG. 31 and FIG. 32 show a top view and side view,
respectively, of a pulley which can slide in a channel.
Anchor block 3101 contains channel 3104. Pulley 3102 is
monolithic with, or connected to (in a fixed or rotary
manner) axle 3103. Axle 3103 connects itself and pulley
3102 to channel 3104 in a slidable manner. Actuating cable
3105 is affixed to axle 3103 and enables the movement of the
pulley in the channel (e.g., actuate using a clock line). Note
that this is but one way of actuating and guiding pulley
movement, and of affixing a pulley to a track, channel, or
other guiding means. Many other designs would be obvious,
such a pulley with an axle extending through the anchor
block with an expanded lower part protruding so that it
cannot come out of the channel, a beveled channel and axle
(e.g., similar to a dovetail joint in profile) which could
accomplish the same goal, or the addition of another axle
structure on top of the pulley, along with an another anchor
block, pinning the pulley between the two.

[0222] Another way of providing guiding means would be
rails mounted on the anchor block, the pulley being affixed
to the rails in any one of many known means, The point is
not the exact mechanical implementation, but rather to
provide some guiding means, preferably with low friction, in
light of the flexibility of cables; any of many well-known
guiding means could be used.

[0223] Understanding now how pulley motion can be
constrained without the need for links, the analogies
between MLL, MFL, and MCL become easier to describe.
Since it has already been shown that, in MLL, locks and
balances suffice (although they are not the only way) to
create Turing-complete systems, it follows that if analogous
mechanisms exist in MCL, MCL is also capable of being
used to create Turing-complete systems. It has already been
stated that, with respect to the basic primitives, MLL links
can be likened to MCL cables, and MLL rotary joints can be
likened to MCL pulleys. To prove this, and show exactly

US 2021/0149630 Al

how cables and pulleys can be used to create the underlying
mechanisms of Turing-complete computing, the design of a
lock and a balance is described.

MCL Locks

[0224] Locks can be created in MCL using knobs that are
integral with, or affixed to, cables or other structures. With
the appropriate design, these knobs allow the reproduction
of the features of an MLL lock. Specifically, with respect to
a binary embodiment with two inputs, from the (0,0)
unlocked state, there are two allowable movements, those
being from the (0,0) unlocked state to one of the locked
states, (0,1) or (1,0). From either of the locked states, the
only allowable movement is back to the unlocked state. Note
that there is no reason that knobs cannot be attached to
virtually any structure, as convenient, and the construction
of locks are not the only use of knobs.

[0225] One way to implement the desired logic is depicted
in FIG. 33a-c. In FIG. 33a, a first cable 3301 is crossed by
a second cable 3302. Two knobs 3303 and 3304, and 3305
and 3306, respectively, are affixed to each cable. FIG. 33a
shows the lock in the (0,0) position, where either cable is
free to move. FIG. 335 shows the lock in the (0,1) position,
the second cable having moved, thus locking the first cable
by virtue of the fact that one of the second cable’s knobs
3305 is between the first cable’s knobs 3303 and 3304,
preventing their movement in either direction. FIG. 33¢
shows the lock in the (1,0) position, the first cable having
moved, thus locking second cable.

[0226] Many other designs are possible which allow knobs
to act as locks. FIG. 34, FIG. 35, FIG. 36, and FIG. 37 depict
an exemplary knob design which can also enforce the
constraint that the only allowed movement in a lock from the
(0,1) or (1,0) state is to (0,0). This knob design is more
complex, but requires only two knobs (one on each cable)
instead of four, to create the desired lock logic.

[0227] FIG. 34 shows a single knob 3401. Generally a
cable would be attached to either end (not shown), but such
knobs could be used in other scenarios as well, such as
connected to MLL links.

[0228] FIG. 35 shows how two such knobs 3501 and 3502,
mesh with each other to form a lock. In this figure, the lock
is shown in the blank state (meaning, neither knob is
positioned to block the movement of the other).

[0229] FIG. 36 and FIG. 37 depict the same knobs 3501
and 3502 in the (0,1) and (1,0) state (or vice versa; since the
mechanism is symmetric, the knob that is defined as the 0
knob and that which is defined as the 1 knob is arbitrary).
[0230] It can be seen by inspecting the shape of these
knobs and their relative positions in the blank, (0,1), and
(1,0) states that if two cables or other structures interact via
the appropriate movement of such knobs, that constraint that
the only movement allowed from the (0,1) or (1,0) state is
to the (0,0) state, is enforced.

MCL Ovals

[0231] Conceptually, it can be useful to define a structure
in MCL called an “oval” since this arrangement of basic
parts is one way to create more complex mechanisms such
as balances and shift registers.

[0232] As depicted in FIG. 39, one way to implement an
oval uses a closed loop of cable 3801 (referred to as the
“logic cable” to distinguish it from cables serving as inputs/

May 20, 2021

outputs, including those providing clock signals, although
this distinction is for clarity of description only, since logic
cables can also provide input/output, as in the case of
crossed ovals which can be used to form cells and shift
registers), which may include one or more structures such as
knob 3802, and which goes around one or more pulleys such
as pulley 3803 (two pulleys are depicted but other numbers
could be used to change the shape, length, vibrational and
entropic characteristics, or other characteristics of the oval,
which despite the name, need not be oval in shape). If one
or more of the pulleys can be unanchored, guiding means
such as track 3804 may be included. Unanchored pulleys
may be actuated (moved along their guiding means) by cable
3805, which may be, e.g., tied to a clock signal.

[0233] One or more cable housings such as that exempli-
fied by housing 3806 may be included to reduce energy loss,
as described elsewhere herein. Knobs facilitate interaction
with other structures and may be connected to one or more
input/output cables 3807 and 3808. By itself and in its
simplest form, an oval merely takes an input and may (but
does not have to), pass it on as an output. For example, if
cable 3807 moves and the pulleys are anchored, the opposite
side of the logic cable must also move, causing the move-
ment of cable 3808. Thus, the oval may relay data, but no
substantial computation is taking place. However, ovals can
be designed to carry out computations by interacting with
other structures (including, e.g., other ovals, or cables).
When coupled with locks, this is one way to construct a
balance via MCL.

MCL Balances

[0234] FIG. 39 depicts a balance as part of an oval.
Balances and ovals can also serve as part of a shift register.
The balance includes pulley 3902 and the left part of logic
cable 3901. FIG. 39 depicts an oval with unanchored pulleys
and two crossed cables which provide data input, the two
crossed cables coming from, e.g., data cables, or another
oval. Optional structures such as cable housings are omitted
for clarity, and as usual, an anchor block is assumed to be
present, but not depicted. Logic cable 3901 goes around
pulley 3902 (and its mate, unlabeled). Both pulleys are
mounted on tracks, exemplified by 3903. Clock line 3904
actuates the mechanism by pulling on the pulleys, which will
cause them to slide in their tracks. The logic cable has two
pairs of knobs 3905 and 3906, and 3907 and 3908. Cables
0 3909 and cable 1 3910 provide input to the oval. Each
crossed cable has a pair of knobs 3911 and 3912, and 3913
and 3914, respectively. By crossing the oval (at right angles
in this diagram, but other angles and designs can be used),
cables 0 and 1 can position their knobs to interact with the
knobs of the oval. Triangular knobs 3915 and 3916 (shown
as triangular only to visually distinguish them from the other
knobs; this shape is not significant) are connected to the 1
output line 3917, and the 0 output line 3918, respectively.
This configuration is just exemplary. The output lines could
just as easily be, e.g., positioned differently, or connected to
the appropriate lock knobs rather than using separate knobs.
[0235] FIG. 39, FIG. 40, and FIG. 41 differ only in the
position of the input cable knobs. In FIG. 39, both locks are
in the blank position; meaning that the input cable knobs and
the logic cable knobs would not interact if the mechanism
were actuated. In FIG. 40, cable 3909 has moved knobs 3911
and 3912 so that knob 3911 is now between two of the knobs
on the logic cable, 3905 and 3906. This can be considered

US 2021/0149630 Al

an input of 0, since the zero input line has moved. If the
mechanism were actuated in this state, the upper side of the
oval would be prohibited from moving, as knobs 3905,
3906, 3911 and 3912 form a lock which is then locked.
[0236] In FIG. 41, cable 3909 has not moved, but instead
cable 3910 has moved. This can be considered an input of 1,
since the 1 cable has moved. The effect is to lock the
opposite side of the oval by placing knob 3913 between
knobs 3907 and 3908. This locking of one side or the other
of'an oval is analogous to locking one side or the other of the
appropriate link in an MLL balance. The functioning of the
oval-based balance is as follows: Assume that the starting
position of the pulleys is at the left side of their respective
tracks. When the inputs are set, the input cables lock either
the upper or lower side of the oval. The clock line then
moves the pulleys from the left to the right. The lateral
movement of the pulleys is the same regardless of the inputs.
However, the side of the logic cable that moves is deter-
mined by the inputs. Whichever side of the logic cable is
locked is forced to remain stationary. Therefore, when the
pulleys move, only the unlocked side of the logic cable
moves. This results in the movement of the 0 output line if
an input of 0 was provided, and movement of the 1 output
line if an input of 1 was provided.

[0237] FIG. 42 shows the position of the mechanism
assuming that an input of 1 was provided and then the clock
line moved the pulleys to the right. Since knob 3913 had
moved between knobs 3907 and 3908, the lower side of the
oval was locked. Therefore, when the pulleys move to the
right, the logic cable must follow in the only manner
possible: by rolling the logic cable so that knob 3915, and
thus the 1 output line 3917, moves to the right. Note that data
cables such as 3909 and 3910 are not the only manner of
providing input to an oval, and output cables such as 3917
and 3918 are not the only way of obtaining output from an
oval. For example, crossed ovals can interact directly, the
logic cable of one oval serving as an input to a neighboring
oval. Given that, when coupled with locks, input can be used
to control which side of an oval moves, this is analogous to
the functioning of an MLL or MFL balance. And, since
Turing-complete systems were shown to be possible using
only locks and balances in MLL, it follows that MCL can
also implement Turing-complete systems.

Moving Mass

[0238] One advantage to some MCL embodiments is
reduced moving mass as compared to some embodiments of
MLL or MFL. Because cables are not required to be rigid,
they can have a smaller cross section and correspondingly
lower mass than MLL links of equivalent length. A conven-
tional example of this principle is to compare the mass of a
cable with the mass of a beam-like structure. In general, a
structure which only has to withstand tensile forces can be
made less massive than a structure which must also with-
stand, e.g., compressive or bending forces. At the molecular
scale, examples of strong but flexible structures which might
be used as cable include carbyne (linear acetylenic carbon),
polyacenes, polyethylene, and polyiceanes, although many
other structures could be used.

[0239] A potential disadvantage to the use of cables is that
the flexibility can allow vibrational modes that would not
exist in a stiffer structure. Further, these vibrational modes
may change as the length of a given section of cable
changes. For example, if the distance between two pulleys

May 20, 2021

changes, changing the length of the cable segment between
them, the allowed vibrational modes may change, just like
fretting a guitar string at different positions. This also results
in entropic changes to the system. Either of these effects can
lead to energy dissipation.

[0240] However, these vibrational and entropic issues can
be addressed while still keeping the moving mass of the
mechanisms low. This can be accomplished by constraining
cables in such as manner as to prevent them from being free
to vibrate. One embodiment of this concept would be to have
cables lie in trenches in the anchor block. Such trenches, if
thought of as having a rectangular cross section (though this
need not be the case) would constrain the cable on three
sides, with the fourth side being open to facilitate routing the
cable out of the trench to interact with pulleys. It is also
possible to constrain a cable on all sides, such as the way a
Bowden wraps its inner cable in a sheath or housing. If this
sheath is relatively rigid, and the internal space of the sheath
appropriately sized as compared to the cable, essentially no
vibration will be permitted within the sheath. A molecular
example of this would be a polyyne cable in a (9,0) SWNT
(single-walled nanotube), but obviously many structures
could be used, preferably those which are rigid, closely fit
the cable and the sheath, and which allow the cable to slide
freely in the sheath (but not to vibrate substantially).

[0241] While short segments of cable may be exposed
between trenches, sheaths, or other types of housings, and
where the cable contacts a pulley, these segments will be
relatively short compared to overall cable length, marginal-
izing the energy loss from cable vibrations and entropic
changes. Since the cable housings need not move with the
cable, moving mass is kept low, potentially allowing sys-
tems with higher switching frequencies as compared to
systems that require more massive rigid links instead of
flexible cables.

[0242] Also, a cable system could be implemented with
fluids inside housings. A solid plug at one end of the housing
would push on the fluid, which in turn pushes on another
plug at the opposite end of the housing. Like a closed loop
of cable, by actuating at either end, this can effectively
provide a “cable” (though made of a fluid, which includes a
gas) which can be pushed or pulled on by actuating the
appropriate end. Such designs could also be used to imple-
ment balances and locks, moving the parts hydraulically
rather than via a solid link or cable. While a hydraulic
system would not traditionally be called a cable, it is
considered to be a cable system herein as the logical and
mechanical functioning is almost identical to that of a solid
cable.

Larger Mechanisms and Systems

[0243] It should be apparent to one skilled in the art that
mechanical components such as logic gates and shift register
cells can be combined to form larger scale computing
structures in a manner analogous to the well-known proce-
dures for forming computers from electronic logic gates and
shift register cells. For purposes of illustration, some
examples of larger scale structures are shown. The examples
depicted employ MLL locks and balances for clarity of
illustration; one skilled in the art should appreciate that MFL
or MCL locks and balances could be substituted, or MLL,
MFL, and/or MCL schemes could be employed with differ-
ent connection schemes to obtain the desired logic functions.

US 2021/0149630 Al

[0244] FIGS. 43a and 435 illustrates one example of a
1-bit full adder 4300 employing a lock-and-balance MLL
scheme, and including clock distribution structure 4302 for
distributing signals from a clock 4304 to a first series 4306
of locks, which are set responsive to A inputs 4308. The
clock distribution structure 4302 is formed by an arrange-
ment of links and bellcranks that serve to distribute and, as
necessary, redirect the clock signal; the distribution structure
4302 includes an array of balances 4310 that allow the clock
signal to be directed along a path of unlocked links. Those
outputs of the first series 4306 that are not locked are moved
by the clock signal, and in turn serve to drive a second series
4312 of locks, which are set responsive to B inputs 4314.
The outputs from the second series 4310 in turn drive a third
series 4316 of locks, which are set responsive to CIN
(carried value) inputs 4318. Depending on the value of the
inputs (4308, 4314, 4318), the clock force is selectively
transferred through an array of output balances 4320 (shown
in FIG. 435) to sum outputs 4322 and carry value outputs
4324 to provide the desired output values based on the
values of the inputs (4308, 4314, 4318). For the full adder
shown, the outputs (4322, 4324) are defined by the inputs
(4308, 4314, 4318) according to the following truth table:

INPUTS OUTPUTS

4308 4314 4318 4322 4324

Ay A, By B, Cing Cin; Sumy, Sum; Cout, Cout;

1 0 1 o0 1 0 1 0 1 0

1 0 1 o0 0 1 0 1 1 0

1 0o o0 1 1 0 0 1 1 0

1 0o o0 1 0 1 1 0 0 1

o 1 1 o 1 0 0 1 1 0

o 1 1 o 0 1 1 0 0 1

o 1 0 1 1 0 1 0 0 1

o 1 0 1 0 1 0 1 0 1
[0245] Several adders 4300 can be combined together into

a cascade 4400, as shown in FIG. 44, and combined with
shift register cells 4402 (such as described with respect to
FIGS. 28a & 28b) and a four-phase clock 4404 to add
multiple bits. The adders 4300 are cascaded together using
ripple carry, while the shift register cells 4402 form a delay
line that stores portions of the results during the computa-
tion. The final result is provided by cascade outputs 4406
after two full clock cycles.

[0246] FIG. 45 shows one simple example of a four-phase
mechanical clock 4500, which could be used to provide a
four-phase clock signal for the cascade 4400 shown in FIG.
44, for a 4-cell shift register 4502 as shown in FIG. 46, or
for other mechanical logic structures. The clock 4500 has a
rotating cam 4504 that moves four followers (4506-1, 4506-
2, 4506-3, & 4506-4). Each of the followers (4506-1,
4506-2, 4506-3, & 4506-4) is connected to an associated
clock input on the logic structure being driven, and may be
directed through bellcranks, balances, and similar distribu-
tion structures as needed (one example of such a distribution
structure is shown in FIG. 485). In the example illustrated,
the followers (4506-1, 4506-2, 4506-3, & 4506-4) are each
respectively connected to a clock input (4508-1, 4508-2,
4508-3, & 4508-4) of a shift register cell (4510-1, 4510-2,
4510-3, & 4510-4), as shown in FIG. 46. The shift register
cells (4510-1, 4510-2, 4510-3, & 4510-4) can each function
in a manner similar to the shift register cells illustrated in

May 20, 2021

FIGS. 25-28a, with the output of one cell setting the lock
inputs of the following cell. Each follower (4506-1, 4506-2,
4506-3, 4506-4) is displaced to follow the surface contour of
the cam 4504.

[0247] The cam 4504 shown in this example has surface
arc segments (4512, 4514) having two different radii (R1,
R2). Thus, the cam 4504 moves the followers (4506-1,
4506-2, 4506-3, 4506-4) between two positions, with a
dwell time at each position. The followers (4506-1, 4506-2,
4506-3, 4506-4) are positioned at four radial positions about
the cam 4504, and thus are moved to advance the associated
clock input (4508-1, 4508-2, 4508-3, 4508-4) at four dif-
ferent phases as the cam 4504 rotates, each phase separated
by 90°.

[0248] Because the followers (4506-1, 4506-2, 4506-3,
4506-4) are positioned to move in different directions as they
move towards and away from the axis of rotation of the cam
4504, the direction of the movement may need to be
redirected to move the associated clock input (4508-1,
4508-2, 4508-3, 4508-4) in the appropriate direction. For
example, when the follower 4506-1 engages the surface arc
segment 4512 having smaller radius R1, it moves inwards
(to the right as shown in FIGS. 45 & 46), and since it is
directly connected to the clock input 4508-1, the clock input
4508-1 also moves to the right, pushing and moving which-
ever elements of the cell 4510-1 are not currently locked. In
this example, the follower 4506-1 is stabilized in its move-
ment by parallel pivot links 4516-1 that are mounted to an
anchor block 4518-1. In comparison, the follower 4506-2 is
positioned vertically, and when it engages the arc segment
4512 it moves downward, but the clock input 4508-2 is
positioned to be pushed to the right (the same direction as
clock input 4508-1); thus, in this case the direction of motion
must be changed. To redirect the motion in this example, the
follower 4506-2 is mounted to an anchor block 4518-2 by a
stabilizing pivot link 4516-2, but also by a bellcrank 4520-2,
which is also pivotably connected to a clock input extension
4522-2, and arranged such that pivoting of the bellcrank
4520-2 caused by downward motion of the follower 4506-2
acts to move the clock input extension 4522-2 to the right.
The clock input extension 4522-2 is in turn directly con-
nected to the clock input 4508-2, and moves it to the right
to push and move whichever elements of the cell 4510-2 are
not locked. While not shown, similar motion-redirecting
structures can be employed to connect the followers 4506-3
and 4506-4 to their respective clock inputs 4508-3 and
4508-4, so that in each case, radial inward movement of the
follower (4506-1, 4506-2, 4506-3, 4506-4) as it comes into
engagement with the smaller-radius surface arc segment
4512 causes the associated clock input (4508-1, 4508-2,
4508-3, 4508-4) to move to the right. Similarly, radial
outward movement of the follower (4506-1, 4506-2, 4506-3,
4506-4) when it comes into engagement with the larger-
radius surface arc segment 4514 causes the associated clock
input (4508-1, 4508-2, 4508-3, 4508-4) to move to the left.
Again, one example of such redirecting structure for all four
inputs is shown in FIG. 486.

[0249] FIG. 47 is a block diagram that illustrates on
example of a simple mechanical computing device that
combines combinatorial and sequential logic functions, a
Moore machine 4700. The machine 4700 has a transition
logic block 4702 that receives inputs 4704 and, in this
example, is driven by a first phase clock signal generated by
a 4-phase clock (it should be apparent to one skilled in the

US 2021/0149630 Al

art that other clocking schemes could be employed, depend-
ing on the details of the logic structures employed). The
outputs of the transition logic unit 4702 are provided as
inputs to a state memory and output logic block 4706, which
is driven by the second, third, and fourth phase clock signals,
and where the input values are operated on to provide
outputs 4708. A state feedback linkage 4710 conveys infor-
mation on the state stored in the state memory and output
logic unit 4706 back to the transition logic unit 4704.
[0250] FIGS. 48a and 485 illustrate one specific example
of a finite state machine 4800 which can provide combined
combinatorial and sequential logic functions, and provides
one example of a device such as shown in block diagram in
FIG. 47. The machine 4800 employs locks and balances to
perform state transitions. The machine 4800 has data inputs
4802 and write enable inputs 4804 that set the positions of
locks in a transition logic block 4806, which is driven by the
first phase of a 4-phase clock 4808 (shown in FIG. 485).
Outputs of the transition logic block 4806 serve as inputs to
a state memory & output logic block 4810 (shown in FIG.
48b), which in this example is arranged as a 3-cell shift
register driven by the second, third, and fourth phases of the
clock 4808. The cells 4812, 4814, and 4816 provide state
memory which, in combination with the inputs provided by
the transition logic block 4806, set the value of data outputs
4818. The value of the data outputs 4818 are also conveyed
back to the transition logic block 4806 by feedback linkages
4820.

[0251] FIG. 49 is a diagram illustrating the state transi-
tions of the machine 4800, which result in the following
truth table:

Write Enable Data
Current State Inputs Data Inputs Next State Outputs
A 0 0 A 0
A 0 1 A 0
A 1 0 A 0
A 1 1 B 0
B 0 0 B 1
B 0 1 B 1
B 1 0 A 1
B 1 1 B 1

[0252] By combining lower-level structures that provide
combinatorial logic, sequential logic, or a combination of
both, more complex computing systems can be constructed,
using principals that parallel those well known in the analo-
gous art of constructing electronic computers from lower-
level devices. This includes, for example, all components
required to form a complete computing system: memory
(whether instruction or data), a control unit and an arithmetic
logic unit (which taken together form a CPU), and input/
output capability. FIGS. 50 and 51 illustrate two examples of
computer architectures could be employed. FIG. 50 illus-
trates a computer 5000 employing the Harvard architecture,
having a control unit 5002 that interacts directly with an
instruction memory 5004, an arithmetic logic unit 5006, an
input/output interface 5008, and a data memory 5010. FIG.
51 illustrates a computer 5100 employing the Von Neumann
architecture, having a CPU 5102 that contains a control unit
5104 and an arithmetic logic unit 5106, and which interacts
with a memory unit 5108. Separate input and output devices
5010 and 5012 are provided. Alternative architectures could
be employed such as others known in the art for electronic

May 20, 2021

computers and variations thereof, some architectures may
offer particular benefits for use with mechanical computing
that differ from the optimization considerations for elec-
tronic computing. It should also be appreciated that it is
possible to have a hybrid electro-mechanical computer;
examples of mechanical and hybrid mechanical/electrical
computing systems are known in the art, such as Conrad
Zeus’s 73 electro-mechanical computing system.

[0253] When scaling up lower-level devices to provide
higher-level computing systems, the use of four-phase
clocking can serve to isolate individual cells in a shift
register or other “layers” (i.e., sequential logic structures
where the output of one logic structure provides the inputs
to a subsequent logic structure). In such cases, forces along
signal lines cannot move beyond two cells before encoun-
tering a locked lock, preventing any attenuation of forces
over long distances. At any point in time, a cell is either
blocked from transmitting forces to adjacent cells, or can
transmit forces only to one other cell (either the predecessor
or the successor). In contrast, un-clocked mechanical logic
systems (i.e., systems where an original clock signal is
passed sequentially through a series or chain of logic struc-
ture “layers™) allow forces to attenuate as they are transmit-
ted over multiple logic levels, which can be a problem. It is
sometimes advantageous to use logic systems that span as
many logic levels as possible without an intervening clock
to isolate the logic levels. Unclocked logic can have advan-
tages over clocked logic, including speed and simplicity.
However, one benefit of clocked logic is signal regeneration
between sequential logic “layers” or series. Force attenua-
tion in link logic systems can be mitigated because each lock
acts as a mechanical amplifier, with a small force controlling
a larger one (e.g., the clock force).

Eliminating Superfluous Parts

[0254] There are multiple ways that logic gates can be
designed using the paradigms discussed herein to obtain a
desired function. In many cases, the inputs to a logic gate
can be functionally combined, since not all inputs may need
to be directed individually in order to provide the desired
logic output, and thus structures to process some combina-
tions of input values may be superfluous. As an example,
FIGS. 52 and 53 compare two different structures for
providing a NOR logic function. FIG. 52 shows a NOR gate
5200 employing an array of eight locks 5202, arranged in
two stages, each responsive to either A inputs 5204 or to B
inputs 5206. The state of each input (5204, 5206) is repre-
sented in the locks 5202. However, to obtain the desired
NOR logic output, if either the A input 5204 or the B input
5206 is 1, the resulting output is O regardless of the value of
the other input; thus, if one of the inputs (5204, 5206) is 1,
the locks 5202 that serve to represent the value of the other
input (5204, 5206) can be considered superfluous, because
either value of that other input will result in the same output
value of 0. FIG. 53 illustrates a NOR gate 5300 which avoids
such redundancy, and thus requires fewer parts than the
NOR gate 5200. In the NOR gate 5300, either of 1-value
inputs 5302 and 5304 acts on an associated lock 5306 or
5308 to lock the path of force to a 1-value output 5310 so
that it cannot move, and only a O-value output 5312 is
possible, regardless of the value of the other input. As a
result, only two additional locks 5314 and 5316 are needed
to address the case where neither of the A or B 1-value inputs
(5302, 5304) has locked the 1-value output 5310. The

US 2021/0149630 Al

resulting structure requires only 4 locks, as well as reducing
the remaining elements required to provide the logic output.
Other logic operations may be similarly subject to simpli-
fication by looking for input conditions where the value of
a single input determines the output, regardless of the other
input values, and then pruning the unnecessary pathways of
the mechanism, avoiding the inclusion of superfluous struc-
tures. This concept can be applied beyond 2-input/1-ouput
gates as well. For example, it could be applied to Toffoli or
Fredkin gates, and could be done at higher levels of circuit
design as well, such as never sending (or never computing
in the first place), an input to a gate or higher-level structure
which can be determined to be logically superfluous.
Interfacing with Electronic Components

[0255] In many potential applications where a mechanical
computer, or mechanical computing mechanism, is used it
may still be desirable to interface the mechanical elements
to conventional electronic input and/or output devices. FIG.
54 illustrates some examples of devices that could be
employed to transfer information into and out of a mechani-
cal computing device 5400. In one example of an input
interface 5402, a conventional electrostatic MEMS comb
actuator 5404 is used to move a link on an input lock 5406
when the input lock 5406 is in an unlocked state. The link
moved can then serve to position one or more input elements
within the computing device 5400. Another example of an
input interface 5408 employs a piezo-electric actuator 5410,
which moves a link of an input lock 5412 when in an
unlocked state. As an example of an output device, an output
interface 5414 employs an output lock 5416 that, when
unlocked, moves a link responsive to one or more output
elements to move a MEMS variable capacitor 5418, the
value of which is read by conventional electronics. In
another example of an output interface 5420, an output lock
5422 has a movable link that, when in an unlocked state, can
move a mirror 5424 that modulates an optical signal from a
light source 5426 that provides a signal to a conventional
optoelectronic detector 5428.

[0256] In some cases, input signals may be noisy and
asynchronous, with amplitudes exceeding the allowed range
of motion for the mechanical logic devices. In such cases,
the signals can be conditioned using mechanisms such as the
input conditioner 5500 shown in FIG. 54. The input condi-
tioner 5500 employs a conditioning spring 5502 in combi-
nation with a mechanical motion stop 5504 to limit the
movement of an initial input element 5506. FIG. 54 also
shows a pair of input locks 5508 that are controlled by a
clock input 5510 and act to synchronize the movement of the
initial input element 5506 to provide synchronized motion of
one of two conditioned input elements 5512.

Type 1-4 Systems

[0257] As mentioned previously, due to the use of ratchets
and pawls, detents, springs, or other mechanisms which
store and then release potential energy in a manner not
directly tied to the systems’ computational degrees of free-
dom, all pre-existing Turing-complete systems for mechani-
cal computing can be categorized as Type 1. Due to possible
energy savings, all other things being equal, Type 2-4
systems would be preferred over Type 1 systems, with Type
4 systems being most preferred. MLL, MFL, and MCL are
all capable of creating Type 2-4 systems. In fact, most of the
embodiments described herein would result in Type 4 sys-
tems, while adding, e.g., springs to some mechanisms (such

May 20, 2021

as between the gradual lock depicted in FIG. 9 and other
mechanisms, to permit backlash) could result in a Type 2
system, and some designs which, e.g., could leave locks in
the (0,0) state with some non-trivial frequency could result
in a Type 3 system (although this can be avoided with proper
design; locks being in the (0,0) state need not mean that parts
are free to move, as can be seen in the mechanism described
herein).

[0258] It may not be immediately apparent that MFL can
be used to create Type 3-4 systems, as flexures may seem to
store potential energy by their very nature. Indeed, some
flexure-based designs, if using the flexures to store potential
energy and then release it to some effect on the system,
would be categorized as Type 1 or Type 2. However, in
MFL, flexures need not be used for potential energy storage.
Rather, their function can be solely to provide kinematic
restraint, just as the analogous structure in MLL, the rotary
joint, does. As such, the force needed to bend a flexure can
be arbitrarily small as long as the flexure still provides the
necessary rigidity with respect to the relevant degrees of
freedom. This leads to the conclusion that the potential
energy storage of flexures can be ftrivial, just like the
potential energy stored in the stretching of MCL cables, or
the stretching, bending, or compression of MLL links.
[0259] Further, even if the force required to bend a flexure
were substantial, since flexures are not being using to actuate
movement in a Type 3-4 system, systems can be designed
where the net potential energy of the flexures is essentially
0. For example, a pair of flexures connected to a link could
be pre-stressed in opposite directions. The movement of the
link in one direction would increase the potential energy of
one of the flexures, while decreasing the potential energy of
the other flexure, resulting in no net change (and therefore
no net increase in the force required to move the link) over
some allowed range of motion.

Ending Comments

[0260] The present application incorporates by reference
material published by Merkle, R., Freitas, R., et al., (2016),
“Molecular Mechanical Computing Systems,” Institute for
Molecular Manufacturing, by Hogg, T., Moses, M., and
Allis, D., (2017), “Evaluating the friction of rotary joints in
molecular machines”, Molecular Systems Design and Engi-
neering, v. 2, pp. 235-252, and by Merkle, R., Freitas, R., et
al. (2018), “Mechanical computing systems using only links
and rotary joints”, ASME Journal on Mechanisms and
Robotics v. 10 pp. 061006.

[0261] Three exemplary paradigms for mechanical com-
puting, MLL, MFL, and MCL, have been described. Each of
these paradigms are capable of providing both the combi-
natorial logic and the sequential logic required to create a
Turing-complete computational system. Each design para-
digm also allows for reversible computing, and simulations
of molecular-scale mechanisms indicate that properly
designed embodiments of MLL can compute with levels of
energy dissipation under the Landauer Limit. There is no
reason to think that MFL and MCL cannot provide similar
efficiency.

[0262] Four classes of computing systems have been
described, designated Types 1-4. Type 1 systems have the
lowest ultimate potential for energy efficiency, and are the
only type of computational system previously enabled.
MLL, MFL, and MCL share physical and logical parallels,
in some sense being three embodiments of the same con-

US 2021/0149630 Al

cepts. Each is capable not only of Turing-complete comput-
ing, but also of providing Type 2, Type 3, and Type 4
systems (alone, or in combination with each other), allowing
for decreased energy dissipation. Each also has a very low
number of types of required primitives, with MLL, and MFL,
only requiring two basic parts, and MCL requiring three,
reducing the complexity of system design, manufacture, and
assembly. Further, not only are a very small number of basic
parts required, but none of the basic parts include gears,
ratchets and pawls, detents, or many other common mecha-
nisms that are widely used in other systems, but which are
likely to dissipate excessive energy through friction or
vibration. Finally, each are capable are creating computa-
tional systems which use dry switching; no power need be
wasted by applying force to a basic part or mechanism, only
to find that it will not move due to its logical state.

[0263] Given the teachings herein, including multiple
embodiments that demonstrate the overarching design prin-
ciples of being able to provide Turing-complete computing,
reversible if desired, via Type 2-4 systems, with very few
types of primitives, which lend themselves to the creation of
energy-efficient mechanisms, both due to the nature of the
mechanisms themselves, and because such mechanisms and
systems can be designed to use dry switching, it will be
apparent that variations using different mechanisms or
primitives could be created, and it is the high-level design
paradigms, not the specific embodiments, which should be
seen as the boundaries of the invention.

1. A computing system comprising:
at least one clock providing at least one mechanical clock
signal;
an anchor block;
an arithmetic/logic unit operated by said at least one
clock, said arithmetic/logic unit receiving data inputs
and having a plurality of combinatorial logic mecha-
nisms that operate on said data inputs to provide
outputs,
wherein, for at least a subset of said plurality of
combinatorial logic mechanisms, each of said com-
binatorial logic mechanisms requires only the use of
primitives selected from the group consisting of rigid
links, pulleys, cables, and knobs, selected ones of
which are movably connected to said anchor block
by joints selected from the group consisting of pivot
joints and flexures, to operate on at least one data
input to provide at least one output;
a memory unit operated by said at least one clock and
having a plurality of mechanical memory cells,
said memory unit being connected to said arithmetic/
logic unit so as to store selected outputs therefrom as
memory states and to provide selected memory states
as inputs to said arithmetic/logic unit,

wherein, for at least a subset of said plurality of
mechanical memory cells, each of said mechanical
memory cells requires only the use of primitives
selected from the group consisting of rigid links,
pulleys, cables, and knobs, selected ones of which
are movably connected to said anchor block by joints
selected from the group consisting of pivot joints and
flexures, to store and provide outputs.

2. The computing system of claim 1 wherein, for at least
a subset of mechanical memory cells in said plurality, the

May 20, 2021

connections between primitives in such mechanical memory
cells remain unbroken as said mechanical memory cells
operate.

3. The computing system of claim 1 wherein, for at least
a subset of combinatorial logic mechanisms in said plurality,
the connections between primitives in each of such combi-
natorial logic mechanisms remain unbroken as said combi-
natorial logic mechanisms operate.

4. The computing system of claim 1 wherein, for at least
a subset of combinatorial logic mechanisms and mechanical
memory cells in said pluralities, any non-trivial storage and
release of potential energy that is required to operate such
combinatorial logic mechanisms and mechanical memory
cells occurs at a speed proportional to one of said mechani-
cal clock signals.

5. The computing system of claim 1 wherein, for at least
a subset of combinatorial logic mechanisms and mechanical
memory cells in said pluralities, storage or release of non-
trivial amounts of potential energy is not required to position
said outputs.

6. The computing system of claim 1 wherein at least a
subset of said combinatorial logic mechanisms are config-
ured to store their input states.

7. The computing system of claim 1 wherein at least a
subset of said combinatorial logic mechanisms and said
mechanical memory cells are configured such that operation
does not require transmitting force to any part that is not free
to move in response to such force.

8. A computing system comprising:

at least one clock providing at least one mechanical clock

signal;

an anchor block;

an arithmetic/logic unit operated by said at least one

clock, said arithmetic/logic unit receiving data inputs

and having a plurality of combinatorial logic mecha-

nisms that operate on said data inputs to provide

outputs,

wherein, for at least a subset of combinatorial logic
mechanisms in said plurality, the connections
between elements in each of such combinatorial
logic mechanisms remain unbroken as said combi-
natorial logic mechanism operates;

a memory unit operated by said at least one clock and

having a plurality of mechanical memory cells,

said memory unit being connected to said arithmetic/
logic unit so as to store selected outputs therefrom as
memory states and to provide selected memory states
as inputs to said arithmetic/logic unit, and

wherein, for at least a subset of said mechanical
memory cells in said plurality, the connections
between elements in each of such mechanical
memory cells remain unbroken as said mechanical
memory cell operates.

9. The computing system of claim 8 wherein those
combinatorial logic mechanisms and mechanical memory
cells in which the connections between elements remain
unbroken during operation are each operated by one of said
mechanical clock signals, and any non-trivial storage and
release of potential energy that is required to operate such
combinatorial logic mechanisms and mechanical memory
cells occurs at a speed proportional to one of said mechani-
cal clock signals.

10. The computing system of claim 8 wherein, for at least
a subset of combinatorial logic mechanisms and mechanical

US 2021/0149630 Al

memory cells in said pluralities, storage or release of non-
trivial amounts of potential energy is not required to position
said outputs.

11. The computing system of claim 8 wherein at least a
subset of said combinatorial logic mechanisms are config-
ured to store their input states.

12. The computing system of claim 8 wherein at least a
subset of said combinatorial logic mechanisms and said
mechanical memory cells are configured such that operation
does not require transmitting force to any part that is not free
to move responsive to such force.

13. A computing mechanism comprising:

an anchor block; and

a plurality of logic structures mounted to said anchor

block, each of said logic structures being configured to
require only the use of primitives selected from the
group consisting of rigid links, pulleys, cables, knobs,
rotary joints, and flexure joints operate on at least one
data input to position at least one output, such output
position(s) being determined by a logic operation per-
formed on at least one data input, where the logic
operation includes at least one of a combinatorial logic
function or a sequential logic function,
wherein said logic structures are connected together
such that the positions of outputs from one subset of
logic structures serve to define the positions of inputs
of another subset of logic structures.

14. The computing mechanism of claim 13 wherein each
of said logic structures further comprises:

one or more input primitives that provide said data inputs

and one or more output primitives that provide said
outputs, wherein discrete positions of said input primi-
tives and said output primitives represent integer val-
ues; and

internal connecting primitives arranged to operably con-

nect said input primitives to said output primitive(s)
such that the position(s) of at least a subset of said
output primitives are defined by a logic operation
performed on at least a subset of said input primitives.

15. The computing mechanism of claim 13 wherein, for at
least a subset of logic structures in said plurality, the
connections between primitives in such logic structures
remain unbroken as said logic structures operate.

16. The computing mechanism of claim 13 wherein, for at
least a subset of logic structures in said plurality, storage or
release of non-trivial amounts of potential energy is not
required to position said output(s).

May 20, 2021

17. The computing mechanism of claim 13 wherein at
least a subset of said logic structures are configured to store
their input states.

18. The computing mechanism of claim 13 wherein at
least a subset of said logic structures are configured such that
operation does not require transmitting force to any part that
is not free to move responsive to such force.

19. A logic mechanism comprising:

an anchor block; and

an assembly configured to perform a defined combinato-

rial logic operation and/or a defined sequential logic
operation, said assembly requiring only any combina-
tion of mechanical link logic primitives, mechanical
flexure logic primitives, and mechanical cable logic
primitives;

wherein,

one or more of said primitives define one or more
inputs of data, encoded by the physical position of
said inputs,

one or more of said primitives define one or more
outputs of data, encoded by the physical position of
said outputs, and

said primitives are connected with each other to selec-
tively allow or prevent movement of other primitives
with respect to said anchor block based on the
physical position of said one or more inputs, so that
said one or more outputs occupy positions defined by
the result of the defined logic operation on said one
or more inputs.

20. The logic mechanism of claim 19 wherein the selec-
tively allowed or prevented movement of primitives deter-
mines the positions into which said one or more outputs are
placed upon displacement of one or more of said primitives
by a mechanical clock signal.

21. The logic mechanism of claim 19 wherein the con-
nections between said primitives required to perform the
defined logic operation remain unbroken as the logic mecha-
nism operates.

22. The logic mechanism of claim 19 wherein storage or
release of non-trivial amounts of potential energy is not
required to position said output(s).

23. The logic mechanism of claim 19 wherein operation
does not require transmitting force to any primitive that is
not free to move responsive to such force.

#* #* #* #* #*

	Bibliographische Daten
	Zusammenfassung
	Zeichnungen
	Beschreibung
	Ansprüche

